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中 文 摘 要 ： 本研究之目的即在探討二氧化碳施肥對光自營培養帝王花

（Protea cynaroides L.) 組培苗生長之影響，並探討多孔

性材料對其生長發育之效應。本研究依二氧化碳濃度之供應

量分為控制組 (0 μmol mol-1 CO2) 及實驗組 (1,000； 

5,000 及 10,000 μmol mol-1 CO2) ，另以洋菜膠、珍珠石

及矽砂三種培養基質進行生長測試。研究結果顯示，相較於

對照組，供以 5,000 及 10,000 μmol mol-1 CO2 可明顯增

加帝王花組培苗之葉片數量；葉片生長總面積之分析結果，

以 1,000 μmol mol-1 組較其它組別明顯為多；葉片生長總

重量之分析結果，1,000 和 5,000 μmol mol-1 組皆優於對

照。在葉綠素含量的結果顯示，10,000 μmol mol-1 組

chlorophyll a, chlorophyll b, 及 total chlorophyll 的

含量最高，與其它組別有顯著差異。隨處理的 CO2 濃度提

高，rubisco 活性有減少的趨勢；相對的，無 CO2 供應組其

rubisco 活性最高。培養基質部分，於珍珠石及矽砂培養之

組培苗，其葉片重量較洋菜膠組明顯為多；而洋菜膠組則有

較高的葉綠素含量。所有植株於培養天 45 天後均可於溫室中

馴化生長。本研究結果發現二氧化碳施肥可促進帝王花（P. 

cynaroides L.) 組培苗之生長發育，對於提高帝王花繁殖成

功率極具參考價值。 

中文關鍵詞： 葉綠素含量； 組織培養； 珍珠石； 多孔材料； 1,5-二磷

酸核酮糖羧化酶/加氧酶活性 

英 文 摘 要 ： This study was conducted to investigate the effects 

of CO2 enrichment on the photoautotrophic growth of 

Protea cynaroides plantlets in vitro. The effects of 

porous supporting material on their growth and 

development were also studied. Four CO2 enrichment 

treatments were used: 0 μmol mol-1 CO2 (control)； 

1,000 μmol mol-1 CO2； 5,000 μmol mol-1 CO2； 

10,000 μmol mol-1 CO2. For the supporting material 

study, three treatments were used: agar； perlite； 

silica sand. Results showed that plantlets enriched 

with 5,000 and 10,000 μmol mol-1 CO2 produced 

significantly higher number of leaves than plantlets 

without CO2 enrichment (control). Furthermore, the 

leaf area (cm2/plantlet) of leaves formed on 

plantlets enriched with 1,000 μmol mol-1 CO2 was 

significantly higher than all the other treatments. 

Moreover, the leaf weight of plantlets enriched with 

1,000 and 5,000 μmol mol-1 CO2 were higher than the 



control treatment. In addition, the analysis of the 

chlorophyll content showed that leaves enriched with 

10,000 μmol mol-1 CO2 contained the highest amounts 

of chlorophyll a, chlorophyll b, and total 

chlorophyll. These were significantly higher than the 

chlorophyll contents of all the other treatments. The 

results of the rubisco activity analysis showed that 

the higher the CO2 enrichment of the plantlets, the 

lower their rubisco activity. Consequently, the 

highest rubisco activity were detected in plantlets 

without CO2 enrichment, whereas those enriched with 

5,000 or 10,000 μmol mol-1 CO2 were found to have 

the lowest activity. Results from the supporting 

material study showed that the leaf weight of 

plantlets cultured on perlite and sand were 

significantly higher than those grown on agar. In 

contrast, the chlorophyll contents of plantlets 

cultured on agar were higher than those on porous 

supporting materials. After 45 days in culture, all 

plantlets were successfully acclimatized to the 

greenhouse. In conclusion, the results of this study 

demonstrated that CO2 enrichment significantly 

improved the vegetative growth of P. cynaroides 

plantlets in vitro, and is suitable to be used as a 

means to propagate this difficult-to-propagate plant.

英文關鍵詞： chlorophyll content； in vitro propagation； 

perlite； porous supporting material； rubisco 

activity 
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摘要 

 

本研究之目的即在探討二氧化碳施肥對光自營培養帝王花（Protea cynaroides L.) 

組培苗生長之影響，並探討多孔性材料對其生長發育之效應。本研究依二氧化碳

濃度之供應量分為控制組 (0 µmol mol
-1

 CO2) 及實驗組 (1,000; 5,000 及

10,000 µmol mol
-1

 CO2) ，另以洋菜膠、珍珠石及矽砂三種培養基質進行生長測

試。研究結果顯示，相較於對照組，供以 5,000 及 10,000 µmol mol
-1

 CO2 可明

顯增加帝王花組培苗之葉片數量；葉片生長總面積之分析結果，以 1,000 µmol 

mol
-1

 組較其它組別明顯為多；葉片生長總重量之分析結果，1,000 和 5,000 

µmol mol
-1

 組皆優於對照。在葉綠素含量的結果顯示，10,000 µmol mol
-1 組

chlorophyll a, chlorophyll b, 及 total chlorophyll 的含量最高，與其它組別有顯著

差異。隨處理的 CO2 濃度提高，rubisco 活性有減少的趨勢；相對的，無 CO2供

應組其 rubisco 活性最高。培養基質部分，於珍珠石及矽砂培養之組培苗，其葉

片重量較洋菜膠組明顯為多；而洋菜膠組則有較高的葉綠素含量。所有植株於培

養天 45 天後均可於溫室中馴化生長。本研究結果發現二氧化碳施肥可促進帝王

花（P. cynaroides L.) 組培苗之生長發育，對於提高帝王花繁殖成功率極具參考

價值。 

 

關鍵字: 葉綠素含量; 組織培養; 珍珠石; 多孔材料; 1,5-二磷酸核酮糖羧化

酶/加氧酶活性 
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Abstract 

 

This study was conducted to investigate the effects of CO2 enrichment on the 

photoautotrophic growth of Protea cynaroides plantlets in vitro. The effects of porous 

supporting material on their growth and development were also studied. Four CO2 

enrichment treatments were used: 0 µmol mol
-1

 CO2 (control); 1,000 µmol mol
-1

 CO2; 

5,000 µmol mol
-1

 CO2; 10,000 µmol mol
-1

 CO2. For the supporting material study, 

three treatments were used: agar; perlite; silica sand. Results showed that plantlets 

enriched with 5,000 and 10,000 µmol mol
-1

 CO2 produced significantly higher 

number of leaves than plantlets without CO2 enrichment (control). Furthermore, the 

leaf area (cm
2
/plantlet) of leaves formed on plantlets enriched with 1,000 µmol mol

-1
 

CO2 was significantly higher than all the other treatments. Moreover, the leaf weight 

of plantlets enriched with 1,000 and 5,000 µmol mol
-1

 CO2 were higher than the 

control treatment. In addition, the analysis of the chlorophyll content showed that 

leaves enriched with 10,000 µmol mol
-1

 CO2 contained the highest amounts of 

chlorophyll a, chlorophyll b, and total chlorophyll. These were significantly higher 

than the chlorophyll contents of all the other treatments. The results of the rubisco 

activity analysis showed that the higher the CO2 enrichment of the plantlets, the lower 

their rubisco activity. Consequently, the highest rubisco activity were detected in 

plantlets without CO2 enrichment, whereas those enriched with 5,000 or 10,000 µmol 

mol
-1

 CO2 were found to have the lowest activity. Results from the supporting 

material study showed that the leaf weight of plantlets cultured on perlite and sand 

were significantly higher than those grown on agar. In contrast, the chlorophyll 

contents of plantlets cultured on agar were higher than those on porous supporting 

materials. After 45 days in culture, all plantlets were successfully acclimatized to the 

greenhouse. In conclusion, the results of this study demonstrated that CO2 enrichment 

significantly improved the vegetative growth of P. cynaroides plantlets in vitro, and is 

suitable to be used as a means to propagate this difficult-to-propagate plant. 

 

Keywords: chlorophyll content; in vitro propagation; perlite; porous supporting 

material; rubisco activity  
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1. Introduction 

 

Protea cynaroides L. (King Protea), which belongs to the Proteaceae family, is 

endemic to South Africa. It is an important cut flower in the international floriculture 

industry. Over the years, it has continued to fetch high prices in the flower market, 

while remaining a highly sought after cut flower. Currently, the majority of cut 

flowers sold in the market are still harvested from the wild.  Overharvesting from the 

wild has led to dramatic decreases in the wild stocks of P. cynaroides. In addition to 

overharvesting, poor and indiscriminant harvesting techniques have caused severe 

damage to the natural environment. Furthermore, cut flowers harvested from the wild 

are of inconsistent quality and fluctuations in the supply are common occurrences. In 

order to provide high quality cut flowers and interrupted supply to the market, P. 

cynaroides plantations are increasingly being established. However, in the 

commercial production of P. cynaroides cut flowers, growers are faced with 

propagation problems, which are exacerbated by the lengthy time needed for the 

establishment of plants in the field. In addition to the fact that the King Protea is an 

extremely slow-growing plant, their nutritional requirements are unique, and difficult 

to manage (Littlejohn et al., 2002). Plants belonging to the Proteaceae family usually 

require sandy, well-drained soils with a low pH (3.5 to 5.8). Of particular importance 

is the phosphorous content of the soil. Normal application rates of phosphorous are 

toxic to P. cynariodes, which often result in death of the plant (Silber et al., 2001). In 

general, these plants have low mineral requirements and are therefore not tolerant to 

salt concentrations that would appear normal to other plants (Montarone and 

Allemand, 1995).  

 

In order to maintain genetic uniformity, vegetative propagation using stem cuttings is 

the preferred method for growers to establish plants in the field. However, 

inconsistent rooting of cuttings and the prolonged time needed for root formation to 

take place are the main problems faced by growers. Rooting of P. cynaroides cuttings 

usually take six months, while low rooting percentages are a frequent occurrence. 

Furthermore, newly established plants in the field need 3 years to start producing its 

first inflorescence, while the first marketable inflorescences are usually only produced 

after 4 – 5 years. Recently, several methods of in vitro propagation of P. cynaroides 

explants have been studied. For example, due to the poor germination rates of P. 

cynaroides seeds in soil, investigations into the in vitro germination of excised zygotic 

embryos were conducted. Results showed that the use of alternating temperatures 

(12C/21C) significantly improved germination percentage, irrespective of growth 

regulators or light conditions (Wu and du Toit, 2010). In addition, zygotic embryos 

and cotyledon explants were found to possess high pre-determined embryogenic 

competency where direct induction of somatic embryos were achieved on P. 

cynaroides cotyledon and zygotic explants cultured on Murashige and Skoog (MS) 

medium (Murashige and Skoog, 1962) without the addition of growth hormones (Wu 

et al., 2007a). The source explants used in these studies were derived from zygotic 

embryos and cotyledons, which varies in genotype. To ensure genetic uniformity, the 

use of vegetative explants is required, and thus micropropagation of vegetative 

materials such as apical or axillary buds is preferred. In vitro establishment of nodal 

explants taken from stem cuttings has been studied with the aim to stimulate the 

growth of axillary buds (Wu and du Toit, 2004). Results showed that oxidative 

browning of nodal explants caused by the leaching of phenolic compounds was a 

major obstacle to successful explant establishment, causing the death of the explants. 
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This difficulty was overcome by soaking the nodal explants in antioxidant solution 

(1500 mg L
-1

 citric acid and 100 mg L
-1

 ascorbic acid) for 1 h before planting. This 

pre-treatment strongly inhibited oxidative browning and led to the successful 

sprouting of axillary buds when cultured on MS medium supplemented with 30 mg L
-

1
 GA3 (Wu and du Toit, 2004). Microshoots were subsequently micrografted onto 

seedling-derived roots (Wu et al., 2007b). Although 3,4-dihydroxybenzoic acid was 

found to be a regulator of root formation in stem cuttings in vivo (Wu et al., 2007c), 

their effects on in vitro rooting of microshoots have not been investigated.  

 

Photoautotrophic propagation of explants is defined as propagation in sugar-free 

medium (Zobayed et al., 2004). Sucrose, which is the most commonly used carbon 

source in plant tissue culture, promotes plantlet growth but depresses photosynthesis. 

The objective of photoautotrophy is to reduce the dependency of cultures on sugar, 

and promote growth and carbohydrate accumulation through photosynthesis and 

inorganic nutrient uptake. Carbohydrate accumulation is often found to be vital in 

root formation. In P. cynaroides, a correlation was found between high carbohydrate 

accumulation and rooting of stem cuttings (Wu et al., 2006). As described by Kozai 

and Kubota (2005), the main advantages of photoautotrophic propagation are: (1) 

stimulation of photosynthesis; (2) reduction of anatomical and physiological 

disorders; (3) higher survival percentage in ex vitro environment; (4) reduction in 

microbial contamination. Recent studies that have successfully cultured plants under 

photoautotrophic conditions include: Dendrobium candidum (Xiao et al., 2007), 

Momordica grosvenori (Zhang et al., 2009), Noppalea cochenilifera (Houllou-Kido 

et al., 2009) and Uniola paniculata (Valero-Aracama et al., 2007).  

 

Of particular importance is that growing plantlets photoautotrophically on medium 

without sucrose enables the development of fully functional photosynthetic apparatus 

(Pospíšilová et al., 1999). However, simply removing sugar from the medium without 

increasing the light intensity and CO2 concentration inside the culture vessel would 

not raise the net photosynthetic rate (Xiao et al., 2010). Therefore, a combination of 

CO2 enrichment and increased light intensity is usually supplied to plantlets growing 

photoautotrophically (Pospísilová et al., 1999). A frequently observed response to 

elevated CO2 is the increase in photosynthesis and the production of leaves with a 

higher C:N ratio (Curtis, 1996), while improvements in stomatal conductance and 

increases in chlorophyll content are also often seen. Kadleček et al. (1998) reported 

increases in chlorophyll a and chlorophyll b contents of Nicotiana tabacum explants. 

Similarly, higher chlorophyll content and stomatal conductance were found in CO2-

enriched Cymbidium plantlets (Norikane et al., 2010). Common methods of 

increasing CO2 concentration are by natural ventilation and forced ventilation. 

Natural ventilation is carried out by attaching a gas permeable film on the lip or wall 

of culture vessels and increasing the CO2 concentration around the culture vessels to 

elevate the in vitro CO2 concentration (Tichá, 1996). A number of studies have 

reported the benefits of elevated CO2 concentrations through natural ventilations on 

plantlet growth and quality: Gerbera jamesonii (Liao et al., 2007), Myrtus communis 

(Lucchesini et al., 2006) and Saccharum spp. (Xiao et al., 2003). 

 

Forced ventilation is achieved by directly supplying CO2 into the vessels (Solárová 

and Pospíšilová, 1997). Xiao and Kozai (2004) found that growth period of forced-

ventilated Zantedeschia elliottiana plantlets was reduced by 50%, while the leaf area, 

shoot and root dry weight were, respectively, 5.2, 4.6 and 3.8 times higher than those 
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cultured under a conventional micropropagation system. In addition, the net 

photosynthetic rate and chlorophyll concentration of Gerbera jamesonii plantlets were, 

respectively, 9.2 and 2.2 times greater than those cultured photomixotrophically (Xiao 

et al., 2005). Moreover, the survival percentage during ex vitro acclimatization was 

95% compared to 60% for photomixotrophic cultures. Similarly, increased CO2 

concentration accompanied by increased irradiance and decreased relative humidity 

during in vitro culture promoted survival rate and growth of Eucalyptus 

camaldulensis (Kirdmanee et al. 1995), Ficus benjamina (Matysiak and Nowak, 

1998), and Rubus idaeus (Deng and Donnelly, 1993) plantlets during acclimatization 

to ex vitro conditions. 

 

Supporting materials that have been used instead of those with gelling properties such 

as agar, include: vermiculite, perlite, sand and paper pulp. The common characteristic 

of these supporting materials is their high porosity. The use of supporting materials 

with high porosity improves the root zone environment due to the higher oxygen 

concentration available (Fujiwara and Kozai 1995). Therefore, development of the 

root system is promoted, and water and nutrient absorption of the plantlets are 

enhanced. As a result, overall growth of plantlets is improved (Afreen-Zobayed et al., 

1999). Findings by Yu et al. (2000) showed that the rooting percentage of Carica 

papaya explants cultured in vermiculite (90%) was significantly higher than those 

grown on agar (62.2%). Furthermore, Afreen-Zobayed et al. (2000) found that the 

root dry weight of sweet potato plantlets cultured on vermiculite were at least 2 times 

greater than those grown on agar. In addition, due to the improved anatomical 

characteristics and physiological functions of the root systems formed in porous 

supporting material, higher survival percentage of plantlets were observed during 

acclimatization of plantlets to the greenhouse (Kirdmanee et al. 1995; Nguyen et al., 

1999; Yu et al., 2000).  

 

From the literature review above, it is clear that photoautotrophic micropropagation 

and porous supporting materials are beneficial to the growth of explants in vitro. For 

slow-growing P. cynaroides explants, improving their growth and development in 

vitro is of utmost importance. Therefore, this study was conducted to investigate the 

effects of CO2 enrichment and supporting materials on the growth of P. cynaroides 

plantlets in vitro. 

 

2. Materials and Methods 

 

2.1. Experiment 1: Effects of CO2 enrichment on the photoautotrophic growth of P. 

cynaroides plantlets in vitro 

  

2.1.1. Plant material and culture conditions 

 

In vitro established P. cynaroides plantlets (terminal microshoots), which have been 

maintained in culture for over six months, were used in this study. Unrooted plantlets 

with six leaves were collected and placed onto growth medium. Modified glass 

desiccators (20 L) (dimensions: 25 cm I.D.; 20 cm H) consisting of a customized inlet 

and outlet connector at the lid were used as culture vessels (Fig. 1). The inlet 

connector of each desiccator was connected to a CO2 gas cylinder (60 L) via silicone 

pipes (i.d. 60 mm). The outlet connector was also connected to silicone pipes, which 

allowed CO2 to exit the culture room. Gas cylinders containing a mixture of different 



 
 

4 
 

concentrations of CO2 were obtained from Jing De Gas Inc. Four CO2 enrichment 

treatments were used: 0 µmol mol
-1

 CO2 (control), 1,000 µmol mol
-1

 CO2, 5,000 µmol 

mol
-1

 CO2, and 10,000 µmol mol
-1

 CO2. The CO2 flow rate was controlled with an air 

flow meter (New-Flow Technologies Inc., Taiwan) and set at 0.5 L h
-1

. A timer 

connected to an electronic valve was used to regulate the flow of CO2 (Fig. 1). Gas 

flow was set every six hours for 15 min each. In all treatments, half-strength 

Murashige and Skoog (MS) basal medium (Murashige and Skoog, 1962) 

supplemented with 0.5 mg L
-1

 6-benzylaminopurine (BAP), 0.01 mg L
-1

 naphthalene 

acetic acid (NAA), 5 mg L
-1

 silver nitrate, 100 mg L
-1

 meso-inositol, fresh banana (70 

g L
-1

), activated charcoal (2 mg L
-1

), 100 mg L
-1

 ascorbic acid (filter-sterilized), and 

agar (9 mg L
-1

), were used. In the control treatment, where a completely sealed 

desiccator was used, sucrose (30 g L
-1

) was included in the growth medium. The pH 

of all growth media was adjusted to 5.5 before autoclaving at 121°C and 104 KPa for 

25 min. Two liters of growth medium was dispensed into the desiccators. Desiccators 

were placed in a culture room with the temperature and photoperiod adjusted to 

25°C±2 and 16 h, respectively. The photosynthetic photon flux (PPF) was adjusted to 

70 µmol sec
-1

 m
2
 in all treatments. 

 

2.1.2. Rubisco activity determination 

 

An extraction cocktail was prepared by mixing the following reagents: 100 mM 

HEPES-KOH (pH 8.0), 10% glycerol, 2% (w/v) insoluble PVP 

(polyvinylpyrrolidone), 0.1% (v/v) Triton X-100 and 5 mM dithiothreitol (DTT; 

added at last). The reaction cocktail consisted of 50 mM HEPES-KOH (pH 8.0), 10 

mM KCl, 1 mM EDTA, 20 mM MgCl2, 5 mM creatine phosphate, 20 mM NaHCO3, 

3 U creatine phosphokinase (CPK), 15 U phosphoglycerate kinase, 6U 

glyceraldehyde-3-phosphate dehydrogenase (GADPH), 5 mM ATP and 5 mM DTT 

(added at last). An aliquot of 0.05 g of leaf sample was ground to powder with 0.5 g 

of acid-washed sand in liquid N2. Two milliliters of extraction cocktail was then 

added for extraction. After 12,000 G of centrifugation at 4
o
C for 10 min, an aliquot of 

50 μL of supernatant was mixed with 850 μL of reaction cocktail and transferred to a 

cuvette. The solution in the cuvette was placed in a water bath (25
o
C) for 10 min, and 

then put into a UV-Vis spectrometer (GENESYS 10S UV-Vis, Thermo Fisher 

Scientific Inc., USA), followed by mixing with 50 μL of 0.2 mM NADH. A 

background rate of NADH oxidation was determined by recording the absorbance at 

340 nm (A340) every 20 seconds for 3 min. An aliquot of 50 μL of 0.5 mM ribose-5-

phosphate was then added for reaction. After a delay of 3s, the decreasing rate of 

NADH was monitored at A340 every 20 seconds for 3 min. Rubisco activity was 

calculated by converting the net decreasing rate at A340 to a rate of NADH oxidation 

according to Usuda et al (1984). 

 

2.1.3. Chlorophyll content determination 

The concentration of chlorophyll was determined according to Wintermans and Mots 

(1965). Fifty milligrams (fresh weight; FW) of sample was ground in 2 mL of 

phosphate buffer solution (pH 7.0). The solution was then centrifuged at 25
o
C. An 

aliquot of 40 μL of supernatant was transferred into a centrifuge tube, mixed with 960 

μL of absolute alcohol and placed in the dark at 4
o
C for 30 min. After 1,000 G of 

centrifugation at 4
o
C for 15 min, an aliquot of 1 mL of supernatant was analyzed with 

a UV-Vis spectrometer (Helios Alpha, Thermo Fisher Scientific Inc., USA) at 649 nm 
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(A649) and 665 nm (A665), which were calibrated with a 95% absolute-alcohol blank. 

Three repeats were carried out for the determination. The concentration of chlorophyll 

a and b was calculated with Eq. 1 and Eq. 2, respectively. Total chlorophyll 

concentration was calculated with Eq. 3. 
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[             ] (
  

   
)  

(                )   

         
                               (2) 

[                 ] (
  

   
)  

(                 )   

         
                      (3) 

 

2.1.4. Acclimatization 

 

Plantlets grown in vitro were transferred to the greenhouse for acclimatization. 

Plantlets were grown in plastic pots containing a mixture of bark and peat (1:1; v:v). 

The temperature of the greenhouse was maintained at 27°C±2.   

 

2.1.5. Statistical analysis 

 

One plantlet per culture vessel was used in each treatment, with ten replications. A 

completely randomized design was used in all treatments. Data for number of leaves, 

leaf area, leaf dry weight, rubisco activity, and chlorophyll content were collected 

after 45 days in culture. Data were analyzed using Duncan’s Multiple Range test to 

compare treatment means using SAS (SAS Institute Inc., 1996). 

 

2.2. Experiment 2: Effects of supporting material on the growth of P. cynaroides 

plantlets in vitro 

 

2.2.1. Plant material and culture conditions 

 

P. cynaroides plantlets germinated from embryos were used as explants. Surface-

sterilization and in vitro excision of the embryos were done according to Wu et al. 

(2007b). Plantlets with three true leaves and roots were placed into liquid half-

strength MS medium containing 0.01 mg L
-1

 NAA, 0.5 mg L
-1

 BAP, 5 mg L
-1

 silver 

nitrate, 100 mg L
-1

 meso-inositol, 70 g L
-1

 fresh banana, 30 g L
-1

sucrose, 2 g L
-1

 

activated charcoal, and 100 mg L
-1

 ascorbic acid (filter-sterilized). The pH of all 

growth media was adjusted to 5.5 before autoclaving at 121°C and 104 KPa for 25 

min. Three supporting material treatments were used: Agar (9 g L
-1

), perlite (13 g), 

and sand (255 g). Growth medium, which were dispensed into glass culture vessels 

(dimensions: i.d., 15 cm; h, 25 cm), were used in the following amounts: agar (50 mL), 

perlite (80 mL), and sand (50 mL). The culture vessels were placed in a culture room 

with the temperature and photoperiod adjusted to 25°C±2 and 16 h, respectively. The 

photosynthetic photon flux (PPF) was adjusted to 50 µmol sec
-1

 m
2
 in all treatments. 
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2.2.2. Acclimatization 

 

Plantlets grown in vitro were transferred to the greenhouse for acclimatization. 

Plantlets were grown in plastic pots containing a mixture of bark and peat (1:1; v:v). 

The temperature of the greenhouse was maintained at 27°C±2.   

 

2.2.3. Statistical analysis 

 

One plantlet per culture vessel was used in each treatment, with ten replications. A 

completely randomized design was used in all treatments. Data for number of leaves, 

leaf area, leaf dry weight, and chlorophyll content (SPAD value, Minolta, Japan) were 

collected after 45 days in culture. Data were analyzed using Duncan’s Multiple Range 

test to compare treatment means using SAS (SAS Institute Inc., 1996). 

 

3. Results and Discussion 

 

3.1. Experiment 1: Effects of CO2 enrichment on the growth of P. cynaroides plantlets 

in vitro 

 

Results showed that P. cynaroides plants enriched with 5,000 µmol mol
-1

 CO2 and 

10,000 µmol mol
-1

 CO2 produced significantly higher number of new leaves than 

those without CO2 enrichment (Fig. 2). In contrast, the number of new leaves 

produced by plantlets enriched with only 1,000 µmol mol
-1

 CO2 was similar to those 

in the control treatment. Similar results were reported in sweet potato where 

significantly higher number of leaves was formed in cultures that were enriched with 

CO2 (Zobayed et al. 1999). In Cymbidium explants, findings by Norikane et al. (2010) 

also showed that explants enriched with 3,000 µmol mol
-1

 CO2 or 10,000 µmol mol
-1 

 

CO2 produced significantly higher number of leaves. The leaf area (cm
2
/leaf) of 

plantlets enriched with 1,000 µmol mol
-1

 CO2 were significantly higher than all the 

other treatments, which suggests that although fewer leaves were produced, larger 

leaves were formed in this treatment (Fig. 3). Similarly, the highest leaf weight 

(mg/plantlet) was found in plantlets enriched with 1,000 µmol mol
-1

 CO2 (Fig. 4). 

Zobayed et al. (1999) also reported significantly higher leaf weight and leaf area in 

sweet potato plants that were enriched with CO2. Similarly, the leaf weight and leaf 

area of banana plantlets were also significantly higher when CO2 enrichment was used 

(Navarro et al., 1994). Furthermore, in our study, although the leaf weight of plantlets 

enriched with 5,000 µmol mol
-1

 CO2 was similar to those enriched with 1,000 µmol 

mol
-1

 CO2, this may have been due to the thickness of the leaves. Fig. 5 illustrates the 

chlorophyll content of leaves in the different treatments. Overall, results showed that 

leaves of plantlets enriched with 10,000 µmol mol
-1

 CO2 contained the highest 

amounts of chlorophyll a and chlorophyll b. These results are in agreement with 

studies by Norikane et al. (2010), which reported higher chlorophyll content in leaves 

of CO2-enriched Cymbidium plantlets. However, contrasting results were found in 

banana plantlets, where significantly lower chlorophyll content was detected in 

explants that were enriched with CO2 (Navarro et al., 1994).  

 

In terms of rubisco activity, our results showed higher activity in leaves of plantlets in 

the control treatment compared to those enriched with CO2 (Fig. 6). Similar results 

were found in Cymbidium plantlets (Norikane et al. (2010) where the lowest rubisco 

activity were recorded in leaves exposed to 10,000 µmol
-1

 CO2. These results are also 
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in agreement with Campbell et al. (1998), where lower rubisco activity were found in 

soybean plantlets exposed to higher CO2 concentrations. In addition, our results 

showed very similar rubisco activity between plantlets cultured in ambient CO2 

(control) and those enriched with 1,000 µmol
-1

 CO2. Vegetative growth of P. 

cynaroides plantlets enriched with different concentrations of CO2 after 45 days in 

culture are shown in Fig. 7. As shown in Fig. 2, these results show a higher number of 

leaves formed in plantlets enriched with 5,000 and 10,000 µmol
-1

 CO2, compared to 

the control treatment. After 45 days in culture, plantlets were transferred to the 

greenhouse for acclimatization (Fig. 8).  

 

3.2. Experiment 2: Effects of supporting material on the growth of P. cynaroides 

plantlets in vitro 

 

Results showed that plantlets grown in agar produced significantly higher number of 

new leaves, compared to those cultured in perlite and sand (Table 1). It is probable 

that plantlets produced a lower number of leaves in perlite and sand may be due to the 

lack of a root system in these plantlets. As a result, with these plantlets being grown in 

porous supporting materials, and without direct contact with the liquid growth 

medium, poor absorption of nutrients could be the primary reason for their lack of 

vegetative growth. In contrast, the leaf dry weights of plantlets grown on porous 

supporting material (perlite and sand) were significantly higher than those in agar. 

However, no significant differences in leaf area (cm
3
) were found between plantlets in 

the different treatments. These results are in contrast with those reported by Xiao and 

Kozai (2006) where significantly higher leaf areas were found in plantlets cultured in 

porous supporting material, compared to those grown in agar. On the other hand, our 

results similar to those reported by Afreen-Zobayed et al. (2000) where significantly 

lower leaf weight were found in leaves of sweet potato plantlets cultured in agar 

compared to those in porous supporting material. In our study, although the thickness 

of the leaves were not measured, it is likely that the differences in leaf weight may 

have been due to leaf thickness. In terms of chlorophyll content (SPAD value), leaves 

of plantlet cultured in agar were significantly higher than those grown in sand (Table 

1). No significant differences were found in chlorophyll content between plantlets 

grown in agar and perlite. Growth of P. cynaroides plantlets in vitro are shown in Fig. 

9. Results of this study indicate that without the presence of roots in the plantlets, a 

direct contact between the shoot and liquid media used in the porous supporting 

material treatments is particularly important. In other studies such as those in statice 

plantlets, where root formation was present, plantlets cultured on porous supporting 

material performed better than those on agar (Xiao and Kozai, 2006). 

 

4. Conclusion 

 

Results of this study clearly showed the beneficial effects of CO2 enrichment on the 

growth and development of P. cynaroides plantlets in vitro. The number of leaves 

formed, leaf area, leaf weight, and chlorophyll content of plantlets enriched with 

either 1,000, 5,000 or 10,000 µmol
-1

CO2 were found to be significantly higher than 

those without elevated CO2. These results provided a better understanding of how 

CO2 enrichment improves the growth of P. cynaroides plantlets, which are known to 

be difficult to propagate in vitro. The results of this investigation have contributed a 

step closer toward mass producing P. cynaroides explants in an in vitro environment. 
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During the course of this research, a scientific paper was published in a peer-review 

journal (Wu and du Toit, 2012) [Appendix A]. 
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Fig. 1. Modified desiccator used as culture vessel. A. CO2 gas cylinder; B. Air flow 

meter; C. Timer; D. Valve; E. Filter; F. Inlet; G. Outlet; H. Growth medium.  

 

 

 

 

  

Fig. 2. Effect of CO2 enrichment on leaf formation in P. cynaroides plantlets after 45 

days in culture. Different letters indicate significant difference at P ≦ 0.05 based on 

Duncan’s Multiple Range test. 
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Fig. 3. Effect of CO2 enrichment on leaf area of P. cynaroides plantlets after 45 days 

in culture. Different letters indicate significant difference at P ≦ 0.05 based on 

Duncan’s Multiple Range test. 

 

 

 

 
 

Fig. 4. Effect of CO2 enrichment on leaf weight of P. cynaroides plantlets after 45 

days in culture. Different letters indicate significant difference at P ≦ 0.05 based on 

Duncan’s Multiple Range test. 

 

0

10

20

30

40

50

60

70

0 1,000 5,000 10,000

L
ea

f 
A

re
a
 (

cm
2
) 

Carbon Dioxide Enrichment (µmol mol-1) 

0

20

40

60

80

100

120

140

0 1,000 5,000 10,000

L
ea

f 
W

ei
g
h

t 
(m

g
) 

Carbon Dioxide Enrichment (µmol mol-1) 

a 

b 
b 

b 

a 
a 

b b 



 
 

13 
 

 
 

Fig. 5. Effect of CO2 enrichment on the chlorophyll content of P. cynaroides plantlets 

after 45 days in culture. Different letters indicate significant difference at P ≦ 0.05 

based on Duncan’s Multiple Range test. 

 

 

 

 
 

Fig. 6. Effect of CO2 enrichment on the rubisco activity of P. cynaroides plantlets 

after 45 days in culture. Different letters indicate significant difference at P ≦ 0.05 

based on Duncan’s Multiple Range test. 
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Fig. 7. Growth of P. cynaroides plantlets under different CO2 enrichment 

concentrations after 45 days in culture. A. 0 µmol mol
-1

 CO2 (control); B. 1,000 µmol 

mol
-1

; C. 5,000 µmol mol
-1

; CO2; D. 10,000 µmol mol
-1

 CO2.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Acclimatization of P. cynaroides plantlets. A. 0 µmol mol
-1

 CO2 (control); B. 

1,000 µmol mol
-1

; C. 5,000 µmol mol
-1

; CO2; D. 10,000 µmol mol
-1

 CO2. 
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Fig 9. Growth of P. cynaroides plantlets on different supporting materials. A. Agar; B. 

Perlite; C. Sand.  

 

 

 

Table 1. Effects of different supporting materials on the growth of P. cynaroides 

plantlets after 45 days in culture. Different letters in each column indicate significant 

difference at P ≦ 0.05 based on Duncan’s Multiple Range test. 

 

Treatment No. of new 

leaves 

Leaf weight 

(mg/leaf) 

Leaf area 

(cm
2
/leaf)

 
Chlorophyll content 

(SPAD value) 

Agar 5.7 a 16.7 b 36.2 a 32.0 a 

Perlite 1.0 b 33.0 a 35.7 a   27.7 ab 

Sand 0.8 b 26.1 a 35.3 a 23.0 b 
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Protea cynaroides L. is a slow-growing, difficult-to-propagate plant. Due to problems such as phenolic 
browning and their sensitivity to the phosphorous nutrient, in vitro multiplication of P. cynaroides 
explants have not been successful. The present study was conducted to induce shoot proliferation of 
established P. cynaroides microshoots, and investigate the effects of high phosphorous concentration 
during explant multiplication. Microshoots with either one or two nodes were cultured on Murashige 
and Skoog (MS) medium containing modified macronutrients and full strength micronutrients. Two 
concentrations of NH4H2PO4 were tested: 0 mg L

-1
 NH4H2PO4, and a high P concentration of 1400 mg L

-1
 

NH4H2PO4. Both growth media were also supplemented with gibberellic acid (GA3) (30 mg L
-1

), 6-
benzylaminopurine (BAP) (2 mg L

-1
), ethylenediaminetetraacetic acid (EDTA) (50 mg L

-1
) and indole-

butyric acid (IBA) (0.5 mg L
-1

). Results show that, contrary to what is often reported, the presence of a 
high phosphorous concentration in the growth media did not adversely affect P. cynaroides explants. 
The survival rate and mean axillary shoot length of explants cultured on growth media containing 1400 
mg L

-1
 NH4H2PO4 were not significantly different from those grown on 0 mg L

-1
 NH4H2PO4. No 

phosphorous toxicity symptoms were observed in explants cultured on media with high phosphorous 
levels. Results also show that explants with two nodes had a higher survival rate and produced 
significantly longer axillary shoots than those with one node, irrespective of phosphorous 
concentration. Multiplication of P. cynaroides microshoots was successfully achieved for the first time. 
 
Key words: King Protea, micropropagation, Proteaceae, shoot proliferation. 

 
 
INTRODUCTION 
 
Protea cynaroides L. (King Protea), which is a member of 
the Proteaceae family, is an important cut flower in the 
floriculture industry. Proteaceae plants are usually found 
in low-nutrient, acidic soils in their natural environment 
(Cowling and Holmes, 1991). In particular, phosphorous 
(P) levels in these soils are very low (Witkowski and 
Mitchell, 1987). It is well known that plants belonging to the  
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Proteaceae family are sensitive to P nutrition (Silber et 
al., 2001). It is often reported that high P concentrations 
are harmful to Proteaceae plants, which result in the 
development of P toxicity (Hawkins et al., 2008; 
Montarone and Allemand, 1995; Montarone and Ziegler, 
1997; Nichols et al., 1979). In fact, P fertilization is not 
recommended when growing Proteaceae plants 
(Littlejohn, 2000).  

Regarding in vitro propagation, very few researches 
have focused on the effects of P on the growth of 
Proteaceae plants. A reduction of P concentrations in the 
growth   medium   is   usually  applied  when  Proteaceae  



 
 
 
 

 
 

Figure 1. Growth and elongation of 
axillary bud during establishment of P. 
cynaroides nodal shoot segment.  

 
 
 
plants are propagated in vitro. In a study by Thillerot et al. 
(2006), the macro-nutrients, with P in particular, were 
greatly reduced in the growth medium used to propagate 
Leucospermum (Proteaceae). Similarly, success was 
achieved by using reduced Murashige and Skoog (MS) 
(Murashige and Skoog, 1962) macro-nutrients and full 
strength micro-nutrients to propagate Protea repens 
(Rugge, 1995) and Telopea speciosissima (Seelye et al., 
1986).  

Due to its slow-growing nature and particular nutritional 
needs, limited success has been achieved in the in vitro 
propagation of P. cynaroides explants. Furthermore, 
phenolic browning of explants is often reported to be a 
limiting factor that severely affects the survival rates and 
growth of P. cynaroides explants in vitro (Thillerot et al., 
2006). Previous studies reported the successful of in vitro 
establishment of P. cynaroides (Ben-Jaacov and Jacobs, 
1986; Thillerot et al., 2006), however, further multi-
plication of these explants has not been achieved. In 
addition, no information on the effects of high P concen-
trations during in vitro propagation of P. cynaroides is 
available.  

The aim of this study was to induce bud proliferation in 
established P. cynaroides nodal explants, and determine 
the effects of high P concentration on the survival rate 
and axillary shoot growth of two types of explants. 
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MATERIALS AND METHODS 
 
Explant establishment 
 
Shoots were taken from 1-year-old P. cynaroides plants grown in a 
greenhouse with the temperature maintained at 22 to 25°C. After 
removing the leaves, each shoot was cut into 1 cm long segments 
with one or two nodes, and placed under running water for 2 h. 
Each nodal segment was then dipped into 70% ethanol for 10 s, 
and stirred in 0.35% sodium hypochlorite for 6 min. Afterwards, the 
explants were placed in filter-sterilized antioxidant solution 
containing 100 mg L-1 ascorbic acid and 1500 mg L-1 citric acid for 1 
h. The nodal explants were then transferred to half-strength MS 
medium supplemented with gibberellic acid (GA3) (30 mg L-1), 6-
benzylaminopurine (BAP) (2 mg L-1), myo-inositol (100 mg L-1), 
ethylenediaminetetraacetic acid (EDTA) (50 mg L-1), sucrose (20 g 
L-1), activated charcoal (3 g L-1), and Gelrite (3 g L-1). The pH of the 
medium was adjusted to 5 before autoclaving at 104 KPa at 121°C 
for 20 min. The explants were cultured in glass test tubes 
containing 10 ml of growth medium, and placed in a growth 
chamber. A 16-h photoperiod was used with the temperature 
maintained at 25 ± 2°C. Cool white fluorescent tubes provided 60 
μmol m–2 s–1 photosynthetically active radiation (PAR).  

 
 
Explant multiplication 
 
For the multiplication stage, elongated axillary buds (microshoots) 
of established explants (Figure 1) were cut into shorter sections and 
subcultured to multiplication media to induce axillary shoot growth. 
Two types of microshoot explants were used: microshoot sections 
with one node or two nodes. A basal MS medium consisting of 
modified macro-nutrients, full strength micro-nutrients and vitamins 
was used: NH4NO3 (23 mg L-1), KNO3 (51 mg L-1), MgSO47H2O 
(370 mg L-1), KH2PO4 (0 mg L-1), KI (830 mg L-1), and CaCl24H2O 
(440 mg L-1). KH2PO4 was substituted with NH4H2PO4 in the growth 
medium. Two concentrations of NH4H2PO4 were tested: 0 mg L-1 
(control) and 1400 mg L-1. The following were also included in the 
medium: GA3 (30 mg L-1), BAP (2 mg L-1), EDTA (50 mg L-1), 
indole-butyric acid (IBA) (0.5 mg L-1), sucrose (30 g L-1) and Gelrite® 
(3 g L-1). The pH was adjusted to 5 before autoclaving for 20 min. 
Microshoots with either one or two nodes were planted into test 
tubes containing 10 ml medium. The explants were placed into a 
growth chamber with a 16-h photoperiod. Cool white fluorescent 
tubes were used as the light source providing 60 μmol m-2 s-1 PAR 
at 30 cm above plant height, and the temperature was maintained 
at 28 ± 2°C.  
 
 
Statistical analysis 
 

A completely randomized design with 20 explants per treatment 
was used. Data for survival rate (%) and axillary shoot length were 
recorded after 60 days in culture. Significant differences in the 
survival percentage between treatments were tested using Chi-
square analysis. Treatment means for axillary shoot length were 
separated using Tukey’s studentized test at 5% level of 
significance. All statistical analyses were performed using the 
Statistical Analysis System (SAS) program (SAS Institute Inc., 
1996). 

 
 

RESULTS AND DISCUSSION 
 
After 60 days in the multiplication medium, growth and 
elongation of new axillary shoots were observed on 
microshoots   in   all   media  treatments  (Figure 2). No P  
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Figure 2. Modified MS medium with (A) 0 mg L-1 NH4H2PO4 and (B) 1400 mg L-1 
NH4H2PO4. X, Microshoot with two nodes from established explant; Y, formation of new 
axillary shoot after 60 days in culture; Z, formation of new buds and shoots on new 
axillary shoot. Bar = 1 cm. 

 
 
 

toxicity was observed in any of the media treatments. 
According to Hawkins et al. (2008), the main effects of P 
toxicity on Proteaceae plants are necrosis, chlorosis, 
stunted growth and rosetting. None of these P toxicity 
symptoms were observed at any time during this 
investigation.  

Results show that the survival rates of the microshoots 
with two nodes were significantly higher than those with 
one node, irrespective of the P concentration (Table 1). 
Furthermore, microshoots with two nodes also produced 
significantly longer axillary shoots than those with only 
one node. Explants with two nodes cultured on media 
without NH4H2PO4 produced axillary shoots that were up 
to five times longer than those with one node, while those 
grown on media containing 1400 mg/L NH4H2PO4 were 
three times longer (Table 1).  

Similar to the survival rate, no significant differences 
were found between the mean lengths of the new axillary 
shoots formed on microshoots with the same number of 
nodes, despite the NH4H2PO4 concentration (Table 1 and 
Figure 2). These results demonstrate that the number of 
nodes on the microshoot explant is an important factor 
affecting explant survival rate, as well as the mean length 
of new axillary shoot formed. It is probable that the 
explants with two nodes are physiologically stronger with 
more actively growing tissues and contain more nutrient 
reserves to start growing, which gave them a better 
chance of survival. No root formation was observed on 
any of the explants in all media treatments. 

The results of this study are in disagreement with most 
reports that generally conclude that a high phosphorous 
concentration is detrimental to the growth of plants in the 
Proteaceae family. It further contrasts the common use of 
standard  half  strength  Murashige and Skoog medium in 

most in vitro propagation of Proteaceae (Bunn et al., 
2010; Kunisaki, 1990; Tal et al., 1992; Watad et al., 
1992a, b). In certain cases, macro-nutrients were speci-
fically reduced, while micro-nutrients were kept at full 
strength (Rugge, 1995; Seelye et al., 1986; Thillerot et 
al., 2006).  

Moreover, not only was there no P toxicity observed in 
any microshoots cultured in media containing 1400 mg/L 
NH4H2PO4, the mean length of new shoots were similar 
to those cultured on media without NH4H2PO4. This could 
be due to a number of factors: according to Chin and 
Miller (1982), potassium deficiency in the media causes a 
decrease in the rate of P absorption. In this study, the 
normal KH2PO4 concentration used in standard MS 
medium was not added to the modified MS basal medium, 
therefore it is possible that with a reduction of potassium 
concentration in the medium, potassium deficiency 
caused lower P absorption.  

High nitrogen concentration may have also played an 
important role. The use of NH4H2PO4 in this study main-
tained a high ammonium concentration in the medium, 
which may have reduced the toxic effects of P. This was 
demonstrated in several Proteaceae studies: Nichols and 
Beardsell (1981) reported that high levels of nitrogen 
alleviated P toxicity in Grevillea cv. ‘Poorinda Firebird’. 
Similar findings were also reported by Grundon (1972) 
where increasing the nitrogen levels in nutrient solution 
cultures helped reduce P toxicity in Banksia and Hakea 
species. However, a study by Groves and Keraitis (1976) 
showed that high nitrogen levels induced P toxicity in 
Banksia serrata seedlings grown in sand culture, 
whereas Prasad and Dennis (1986) reported that 
Leucadendron ‘Safari Sunset’ was tolerant to high levels 
of P, irrespective of the levels of other nutrients.  
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Table 1. The response of microshoots with either one or two nodes cultured on modified MS media after 60 days in 
multiplication media.  
 

NH4H2PO4 (mg L
-1

) Explant type Survival rate (%) Mean length of new axillary shoot (mm) 

0 
One node 40

a
 2.6 ±1.12

a
 

Two nodes 100
b
 13.8±6.38

b
 

    

1400 
One node 60

a
 5.4 ±1.73

a
 

Two nodes 100
b
 17.4±5.38

b
 

 

For survival rate, values with different letters within the same column are significantly different based on Chi-square analysis 
(P ≤ 0.05). For shoot length, values within the same column with different letters are significantly different at P ≤ 0.05 
according to Tukey’s studentized test. 

 
 
 

From the results of numerous studies mentioned 
above,it can be established that the inconsistencies in the 
causes and alleviation of P toxicity in Proteaceae may be 
due to the fact that different genera and species of 
Proteaceae react differently to P, where in one species, a 
certain mineral nutrient may alleviate P toxicity, and in 
another species, it may aggravate it. Montarone et al. 
(2003) confirmed in their study that large differences in 
mineral requirements exist between cultivars belonging to 
the same Proteaceae genus, with even larger differences 
between genera.  

In conclusion, successful multiplication of microshoots 
produced from established shoot segments was achieved 
for the first time. Microshoots with two nodes were the 
most suitable for multiplication in terms of explant survival 
and subsequent axillary shoot growth. Of particular 
importance is that P. cynaroides explants were not 
adversely affected by high P concentrations in the growth 
medium. The results of this study throw more light on the 
nutritional requirements of P. cynaroides. The successful 
multiplication of the microshoots is an important step 
towards mass-production of this difficult-to-propagate 
species in vitro. Further studies are needed to establish 
the effects of other nutrients on P. cynaroides explants 
cultured in vitro, and to induce root formation in 
microshoots. 
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further advancements in the in vitro propagation of P. cynaroides plants are 

underway, particularly in the area of improving their growth rates. Preliminary 

results have been very positive, and show great potential for further 

investigations. Parts of the results of the current study have been published in 

a peer-reviewed journal, while preparations are underway for the publication of 

the remaining results. 

 


