
科技部補助專題研究計畫成果報告

期末報告

防帳卡號被盜之低成本免憑證電子錢網路付款可行性方案
研究

計 畫 類 別 ：個別型計畫

計 畫 編 號 ： NSC 102-2221-E-343-004-

執 行 期 間 ： 102年 08 月 01 日至 103年 07 月 31 日

執 行 單 位 ：南華大學資訊管理學系

計 畫主持人：周志賢

報 告 附 件 ：出席國際會議研究心得報告及發表論文

處 理 方 式 ：

1.公開資訊：本計畫涉及專利或其他智慧財產權，1年後可公開查詢

2.「本研究」是否已有嚴重損及公共利益之發現：否

3.「本報告」是否建議提供政府單位施政參考：否

中 華 民 國 103年 10 月 31 日

中 文 摘 要 ： 安全的電子付款工具在 B2C 或 C2C 電子商務中扮演很重要

的角色。

中文關鍵詞： 電子錢，匿名性，匿名撤銷，身分盜用，金融卡盜刷

英 文 摘 要 ： Secure electronic payment instruments play an

important role in retail electronic commerce. As in

most countries, people in Taiwan often use credit

cards for payments on Internet shopping. However, the

information contained in the card includes sensitive

data like card number, valid date, and CVC (Card

Verification Code) which all easily suffer data

leakage, or impersonation attacks. This may cause the

banks, merchants, or user to suffer serious losses.

In this paper, we propose an ID-based untraceable

electronic cash without card number or personal

information to mitigate the risk of data leakage.

Meanwhile, our method also considers preventing the

anonymity abuse and adds the function of anonymity

revocation through a trust party. In addition, due to

the proposed is an ID-based scheme, it has the

advantage of PKI (Public Key Infrastructure) free and

thus save the certificate management cost.

英文關鍵詞： Electronic Cash, Anonymity, Anonymity Revocation,

Identity Theft, Financial Card Fraud

FINAL REPORT

ID-Based Certificateless Electronic Cash on Smart Card

against Identity Theft and Financial Card Fraud

Jue-Sam Chou

July 2014

2/42

Abstract

Secure electronic payment instruments play an important role in retail electronic

commerce. As in most countries, people in Taiwan often use credit cards for payments

on Internet shopping. However, the information contained in the card includes

sensitive data like card number, valid date, and CVC（Card Verification Code）which

all easily suffer data leakage, or impersonation attacks. This may cause the banks,

merchants, or user to suffer serious losses. In this paper, we propose an ID-based

untraceable electronic cash without card number or personal information to mitigate

the risk of data leakage. Meanwhile, our method also considers preventing the

anonymity abuse and adds the function of anonymity revocation through a trust party.

In addition, due to the proposed is an ID-based scheme, it has the advantage of PKI

(Public Key Infrastructure) free and thus save the certificate management cost.

Keywords: electronic cash, anonymity, anonymity revocation, identity theft, financial

card fraud

3/42

Content

1 INTRODUCTION 4

2 BACKGROUND KNOWLEDGE OF ELECTRONIC CASH 6

3 SECURITY RATIONALES 8

3.1 Intractable Problems and Assumptions 8

3.2 Bilinear Pairing 9

3.3 BLS Signature 9

3.4 Secure Hash Function 10

4 THE PROPOSED SCHEME 11

5 SYSTEM ANALYSIS AND EVALUATION 15

6 IMPLEMENTATION 20

7 CONCLUSION 22

REFERENCE 23

APPENDIX 26

I Main Program 26

II Program Running Result 35

4/42

1 Introduction

Internet shopping nowadays has become an important consumption channel for

people’s daily life. However, it might make the consumer unsatisfactory about

personal data leakage, identity theft and transactions’ unsafety. According to an

investigation in Taiwanese e-commerce yearly book 2011, the most frequent used

payment tools for online shopping are: online credit card payment (74.6%), WebATM

(i.e. online Automatic Teller Machine) account transfer (52.8%), physical ATM

account transfer (46.6%), payment after shipment (37.5%), convenient store payment

(37.5%), respectively. So, there are about three quarters of Taiwanese consumers

experiencing online credit card payments. This is because Taiwanese have been

familiar with the credit cards payments in physical stores, and the credit card usage is

usually encouraged by bonus activities sponsored by the companies. In addition,

online credit card payment does not require a card reader while compared with the

WebATM account transfers in Taiwan. It only needs the consumers to input card

number, CVC (Card Verification Code) and the valid date of the card. However, all

these personal information can easily suffer data theft. For example, the customer’s

personal computer is likely to be embedded with Trojon horses to steal the data, and

the keystrokes, communication packets and computer screens are also likely to be

skimmed. Moreover, if the merchant websites are not properly managed, the

transaction data will easily become the targets for criminals. According to a report

from Taiwan Joint Credit Information Center, the percentage of online credit card

frauds in the total credit card frauds is 40% in 2009, but it rises to 60% rapidly in the

third quarter of 2011. Compared to the serious threat of online credit card frauds,

WebATM payment has a lower risk in this aspect. This is because WebATM payment

requires the consumer to insert his/her debit card into a card reader, which is

connected to his/her own personal computer or notebook, and then enter his/her

password through the keypad to enable account transfer. Such a solution builds a

defense against Trojon horses stealing users’ password [1]. However, users’ bank

accounts are still clearly transferred on the open network.

The above two most frequently used online payment tools in Taiwan are

account-based. Both require the payer to provide personal identifiable information for

the financial institutes to confirm the payments. From this, it can be easily seen that

the card number / account number and the necessary individual information all need

to be transferred on the net. This naturally brings the risk of data leakage or theft. To

cope with the problem, untraceable electronic cash (e-cash) which contains no

information about individuals was developed to resist both personal data theft and

5/42

identity theft [2]. It typically composes of a series of random bits and a bank’s

signature, and therefore cannot be linked to any personal accounts.

 However, the digital signature in the e-cash needs to use a public key

cryptosystem, such as RSA, the most frequently used scheme. In that, the public key

composes of a series of meaningless binary digits. For example,

Public exponent:

0x10001

Modulus:

13506641086599522334960321627880596993888147560566702752448514

38515265106048595338339402871505719094417982072821644715513736

80419703964191743046496589274256239341020864383202110372958725

76235850964311056407350150818751067659462920556368552947521350

08528794163773285339061097505443349998111500569772368909275623

In commercial applications, a meaningless RSA public key requires using a

meaningful certification to link to a user’s identity. It requires additional overhead to

handle the certification management. For this reason, an ID-based cryptosystem was

proposed which no longer demands the certification because of its using user

identification as the public key. For example

Public key:

Alice@xxx.com

The advantages of an ID-based public cryptosystem are that it requires neither

PKI nor certification management, such as certificate enquiry, revocation, renewal,

and so on. The purpose of this paper is to implement such an ID-based untraceable

electronic cash to prevent personal data leakage and achieve more efficient public key

usage. The organization of the remaining paper is as follows. The background

knowledge is introduced in Section 2. Some security rationales are described in

Section 3. Section 4 shows our proposal. Section 5 discusses its security and

performance. Finally, a conclusion is given in Section 6.

6/42

2 Background Knowledge of Electronic Cash

Electronic cash (e-cash) like paper money can allow payers to pay without being

traced. There have been many cryptographic scientists working within the field of

e-cash system design [3-20] since Chaum first proposed the concept in 1982 [3].

From the control viewpoint, e-cash systems fall into two categories: (1)

bank-controlled and (2) P2P (peer-to-peer) -distributed. A bank-controlled e-cash

system typically contains three roles: customer, bank and merchant, and three

protocols: withdrawal, payment, and deposit. As a required function of an untraceable

e-cash system, when a customer withdraws e-cash from an issuing bank and pays it to

a merchant, and then the merchant deposits it at an acquiring bank, no one can link the

e-cash to the customer. This is referred to as anonymity or untraceability. The main

underlying technique is the blind signature scheme. Mondex [21] is one of the

bank-controlled systems, produced by National Westminster Bank in the U. K., and

has a great success in 1990s. It has absolute anonymity, but at the same time opens a

perfect channel for criminals to untraceably transfer their illegal funds. On the other

hand, P2P distributed e-cash system kills the role of central bank or authority and thus

reduces the expensive bank-processing cost. Bitcoin [22-24] is a famous P2P

distributed e-cash system and has been reigning over the cyberspace in the real world.

All activities, including coin mintage, coin validness check, double-spending check,

are done through the cooperation of the peer nodes on the Bitcoin P2P network. By

just generating a public/private key pair, a user can join the Bitcoin network, and use

the public key as his/her pseudonym to mine, exchange, buy, and spend the Bitcoin

without revealing his/her real identity and location. Nevertheless, some privacy issues

emerge because of the public transactions. For instance, one may trace sensitive

transactions or de-anonymous social network data through using network topology,

and thus violating users’ privacy [25, 26].

To be a sound cash system, some essential properties should be centralized.

 Verifiability: The e-cash validity can be publicly examined.

 Unforgeability: E-cash should be issued only through specialized procedures.

No one, including banks, can forge e-cash by any other ways.

 Untraceability (or unlinkability): It means that no one, including the bank, can

know the e-cash owner when the cash is used legally. Although, the bank

provides e-cash withdrawal service to its account holder, it cannot link any

e-cash to the holder’s identity.

 Double-spending detection: An e-cash system should prevent e-cash from

double spending. If this occurs, the system should be able to get the cheater

7/42

efficiently.

 Anonymity revocation: When e-cash is illegal used such as, money laundering

and tax evading, the system should has the ability to reveal its owner. An e-cash

system with anonymity revocation is called fair e-cash system.

For fair e-cash systems [6, 10, 11, 15, 16, 19, 20], an additional trustee is

involved in the escrow of some critical information, such as linking the owner’s

identity to the e-cash. Once a bank or a law enforcement agency requests anonymity

revocation, the trustee can reveal the e-cash owner. In other words, the anonymity of

e-cash is maintained if the e-cash is used legally, but is revoked if misused.

 Pairing-based cryptography is greatly applied in various applications for latest

two decades, because it is easier to design an ID-based cryptosystem and requires

only about one sixth key length compared to RSA-based cryptosystems. There have

been several pairing-based fair e-cash systems proposed. The work of Hufschmitt and

Traoré [27] is provably secure, but needs many underlying building blocks (including

bilinear pairing, Paillar encryption, double ElGamal encryption, and Fiat-Shamir

heuristic) which make it very complicated. Fuchsbauer et al.’s fair e-cash [12], like

Hufschmitt and Traoré’s, is also a complex construction, because it uses public

encryption primitive to achieve e-coin’s blindness, and employs both commitment

technique and zero-knowledge proof to ensure the encrypted content is

well-constructed so as to let the inside tracing information can be disclosed when

anonymity revocation is demanded. In addition, the underlying signature scheme

(constructed from group signature) is also in complex concept. On the other hand,

three pairing-based e-cash systems, Popescu and Oros’ [28], Wang et al.’s [29], and

Chen et al.’s [30], make their e-cash include a trustee-issued certificate which can be

linked to e-cash owner only by the trustee himself. However, Chen et al. pointed that

Popescu and Oros’ scheme violates anonymity, and Wang et al.’s has a deficiency in

that a malicious user can use an unregistered certificate to withdraw e-cash from a

bank. Until now Chen et al.’s scheme [30] is the most efficient pairing-based fair

e-cash systems among the above-mentioned, but it has two weaknesses. First, its

security is not formally proved. Second, the blind factor used for protecting the

message to be signed is always the same if the user employs the same certificate to

withdraw e-cash.

8/42

3 Security Rationales

This section defines several terminologies used in this paper.

3.1 Intractable Problems and Assumptions

A major goal of cryptographic applications is to create a secure cryptographic

scheme such that breaking the scheme can be reduced to solving an intractable

problem. Formally, problems that can be solved in theory (e.g., given infinite time),

but taking too long for their solutions to be useful in practice, are known as

intractable problems. In complexity theory, a problem is intractable if no

probabilistic polynomial-time (PPT) adversary can solve it with non-negligible

probability. Followings are some intractable problems and assumptions related to

elliptic curve cryptography [31, 32] used in this study. In them, we let G be an

additive elliptic-curve group with prime order q and a base point P.

Definition 2.1 The Discrete Log (DL) Assumption states that the following problem

is (τ, ε)-intractable: given a group G = P and a random point QG, find the integer a

*

qZ such that Q = aP, by taking at most time τ with a negligible probability ε.

Definition 2.2 The Computational Diffie-Hellman (CDH) Assumption states that

the following problem is (τ, ε)-intractable: given a group G = P and two random

points aP and bPG, compute abP, with at most time τ and probability ε, if ε is

negligible.

Definition 2.2 The Variant Computational Diffie-Hellman (VCDH) Assumption

states that the following problem is (τ, ε)-intractable: given a group G = P , and three

random points Q, aQ and bQG, compute abQ, with at most time τ and probability ε,

if ε is negligible [33].

Koblitz and Menezes [32] pointed out that the DL and CDH problems on a

sufficiently large group are regarded as classical intractable problems. Rather, the

Decisional Diffie-Hellman (DDH) problem — given three random points aP, bP, and

cPG, decide whether c = ab (mod q) — is believed to be intractable on any

suitable group, except for the gap Diffie-Hellman (GDH) group in which there exists

an efficient bilinear pairing function. That is, the DDH problem on a GDH group

can be solved in polynomial time through bilinear pairing; we will describe this in

9/42

the following section.

3.2 Bilinear Pairing

Weil pairing [34, 35] is a tuple (G1, G2, q, P, ê) where (G1, +) and (G2,．) are

two cyclic groups of order q, P is a generator of G1, and ê : G1G1→G2 is a mapping

which has the following properties:

1. Bilinearity: If a, b are two integers and P, Q 1G , one has ê (aP, bQ) = ê (P,

Q)
ab

.

2. Non-degeneracy: If P is a generator of G1, then ê (P, P) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê (P, Q) for any P, Q

1G .

An important result is that Weil pairing allows us to determine whether points aP, bP,

cP in G1 satisfies ab = c mod q, i.e.

 ab = c mod q iff ê (aP, bP) = ê (P, cP).

In other words, for solving a DDH problem one requires only two evaluations of the

Weil pairing for points in G1. That is why the group G1 is referred to as a GDH

group because of the difference in difficulty between CDH and DDH problems in the

group.

3.3 BLS Signature

Boneh, Lynn, and Shacham [35] proposed a short signature scheme, BLS in brief,

from Weil pairing in 2001. The signature length is half the size of a DSA signature

for a same security level, and the scheme should be constructed over a GDH group.

BLS comprises the following system settings and some algorithms: KeyGen, Sign,

and Verify.

 System settings: The system parameters (G1, G2, P, q, ê) are the same as the

ones in Section 2.2, In addition, the system makes use of a hash algorithm H: {0,

1}
*
  G1, mapping a string to a point in G1.

 KeyGen algorithm: This algorithm picks a random number x  *

qZ as the

signing key and computes the corresponding verification key X = xP, which is a

point in G1.

 Sign algorithm: To sign on a message m{0, 1}
*
, compute signature S = xH(m),

and output S.

 Verify algorithm: On inputting message m and its signature S, one can use the

10/42

verification key X to verify S by examining whether (P, X, H(m), S) is a

Diffie-Hellman tuple. In other words, one can check whether the equation ê (X,

H(m)) = ê (P, S) holds.

The BLS signature scheme is provably secure under the intractability of the CDH

assumption.

3.4 Secure Hash Function

A hash function H(.) is a transformation that takes a variable-size input m and

returns a fixed-size string, which is called the hash value h (i.e., h = H(m)) or the

digest of message m. A secure hash function [36] must be able to withstand all

known types of cryptanalytic attacks. At a minimum, it must have the following

properties:

1. Pre-image resistance: Given h, it should be computationally infeasible to find

any message m such that h = H(m). This concept is called a one-way

property.

2. Second-pre-image resistance: Given an input m1, it should be

computationally infeasible to find another input m2, where m1  m2, such

that H(m1) = H(m2). This property is referred to as weak collision resistance.

3. Collision resistance: It should be computationally infeasible to find two

different messages m1 and m2, such that H(m1) = H(m2). Such a pair is called a

cryptographic hash collision. This property is called strong collision

resistance.

11/42

4 The Proposed Scheme

 Our design goals are to propose a fair untraceability e-cash system and to

minimize user side computations. The proposed system has four parties: trustee T,

bank B, user U, and merchant M, and five protocols: license issuing, withdrawal,

payment, deposit, and owner tracing. We assume that T is a trust third party. (To

prevent the collusion, the private key of T can be separated into several shares held by

different authorities through a share-secrecy technique.) The following details the

system initialization and the five protocols. The notations are listed in Table 1 and the

protocols are illustrated in Figure 1.

Initialization. The trustee T publishes system parameters {G1, G2, P, q, ê , H}, as

defined in Section 3.2. It also publishes a mapping function H1 which maps {0, 1}
*
 to

G1. In addition, bank B registers its private key x *

qZ and its identity with a valid

date, IDBV = IDB||VDB, to the trustee T. B then obtains QB = H1(IDBV), PB = xQB and

SIGT(QB||PB), where SIGT(QB||PB) is the trustee’s signature on QB||PB. Then, bank B

makes the information, IDBV, PB and SIGT(QB||PB), public.

Table 1 Notations in the proposed scheme

x Bank’s private key

IDBV bank’s pubic data indicates the bank’s identity

together with a valid period.

QB QB = H1(IDBV) is bank’s public data

PB PB = xQB is bank’s public data

SIGT(.) Trustee T’s signature on some message

w A user-chosen license key

QL QL = wPB is a license for e-cash

SK a session key shared between a user and a

merchant in a payment transaction

License issuing protocol. Once a user U who is an account holder of a bank B wants

to employ e-cash as a payment tool, he/she should apply for a license to the trustee T

in advance. U and T together do the following steps.

(1) U randomly chooses a license key w *

qZ and sends it with his/her bank’s

name to T through a secure and authenticated channel (e.g., they have

performed mutually authentication and session key exchange in advance.).

(2) T fetches the bank’s public information IDBV, QB and PB from its database.

12/42

(3) T computes a license as QL = wPB and then signs the license as SIGT(QL). T

stores {U, QL} into its database and returns {QL, SIGT(QL), IDBV, PB} to U.

(4) On receiving the message, U confirmes the validness of QL by examining the

T’s signature SIGT(QL). If it is valid, U stores {w, QL, SIGT(QL), IDBV, PB}

into his/her smart card.

Withdrawal protocol. After having a valid license, a user U can withdrawal e-cash

from his/her bank B. The detail steps between U and B are described below.

(1) U selects a random e-coin c, a random element R' in G1 and two blind factors

a, b *

qZ such that ab = w mod q, where w is U’s license key. U then

computes a blind message M = b(H(c||R||IDBV) + R) and sends M to B.

(2) B performs blind signing, S' = xM, by using its private key x, and then returns

the blind signature S' to U.
(3) U unblinds the received S' by computing S = aS' and R = wR', and obtains

e-cash {c, S, R}.
Here, the proposed e-cash verification equation is

 ê (H1(IDBV), S) =? ê (QL, H(c||R||IDBV)) ê (PB, R). …… Eq.(1)

We show the proof below.
 ê (H1(IDBV), S)

= ê (QB, S)

= ê (QB, aS')

= ê (QB, axM)

= ê (QB, axb(H(c||R||IDBV) + R'))

= ê (QB, wxH(c||R||IDBV)) ê (QB, wxR')

= ê (wxQB, H(c||R||IDBV)) ê (xQB, R).

= ê (wPB, H(c||R||IDBV)) ê (PB, R).
= ê (QL, H(c||R||IDBV)) ê (PB, R).

Payment protocol. After purchasing, a user U wants to pay a merchant M with the

e-cash in his/her smart card. Suppose that the e-cash left is $d and the amount to be

paid is $m, where d ≥ m. U and M will do the followings:

(1) U sends e-cash and the corresponding data, pmsg = {c, S, R QL, SIGT(QL),

IDBV, PB} to M.

(2) On receiving the message, M confirmes the validness of QL by examining T’s

signature SIGT(QL). If it is valid, M makes a challenge, K, by randomly

selecting an integer k *

qZ and computing K = kPB, and sends K to U.

13/42

(3) On receiving the challenge K, user U computes SK = wK = wkPB and the

owner-signature Sm = wH(SK||t||m) using license key w, where t is the

current time. U then decreases e-cash balance in the smart card by $m, stores

{t, m, K} into the smart card, and sends {t, m, Sm} to M.

(4) On receiving {t, m, Sm}, M computes QB = H1(IDBV) and SK' = kQL = kwPB.

M then verifies whether the payer U is the owner of license QL by checking

ê (PB, Sm) =? ê (H(SK||t||m), QL). If the equation holds, M verifies whether the

e-cash is valid by checking ê (QB, S) =? ê (QL, H(c||R||IDBV)) ê (PB, R). If

both checks passed, M stores a payment record, {c, S, R QL, SIGT(QL), IDBV,

PB, k, t, m, Sm}, into its database.

License issuing: User Trustee T

1.Selects license key wZq
*
. w, BankName

 QL,SIGT(QL),IDBV, PB

4.Verifies QL with SIGT(QL) and

 Stores {w, QL, SIGT(QL), IDBV, PB}

2.Fetchs the bank’s pubic data IDBV,QB,PB.

3.Computes QL = wPB, SIGT(QL).

Withdrawal: User Bank B

1. Selects c, R' 1G , a, bZq
*

such that ab = w mod q, and

computes M = b(H(c||R||IDBV)+R). M

 S'

3. Computes S = aS', R = wR', and

obtains e-cash={c, S, R}.

2.Computes S' = xM.

Payment: User Merchant M

(Note: t- current time, m – paid money)

1.pmsg = {c, S, R, QL, SIGT(QL), IDBV, PB} pmsg

K

3.Computes SK = wK and Sm = wH(SK||t||m).

2. Verifies QL with SIGT(QL).

Selects kZq
*
, and computes

 K = kPB.

 t, m, Sm 4. Computes QB = H1(IDBV), SK = kQL

Verifies

ê (PB, Sm) =? ê (H(SK||t||m), QL),

ê (QB, S) =? ê (QL, H(c||R||IDBV)) ê (PB, R),

Stores payment record into DB.

Fig. 1. The proposed protocols

14/42

Deposit protocol. On the end of a business day, merchant M sends payment records

in batch to bank B for e-cash depositing. For each payment record, B takes the

following actions.

(1) verifies the validness of the license QL by examining SIGT(QL).

(2) fetches the corresponding QB and PB from its database using the received

IDBV.

(3) confirms the ownership of the payment record by computing SK = k·QL =

kwPB and checking to see if ê (PB, Sm) = ê (H(SK||t||m), QL) holds.

(4) verifies the validness of the e-cash by evaluating ê (QB, S) =? ê (QL,

H(c||R||IDBV)) ê (PB, R).

(5) checks to see if the payment record is a duplicate. If so, we impute this

misuse to the dishonest M who doubly deposits it.

(6) checks if the e-cash is over-spent. This means that B will sum all payment

amounts relating to the same e-coin c; if the total amount is over the face

value, we impute this misuse to the dishonest U who overspends the e-cash.

(7) If all above checks passed, B accepts the payment record and credits $m

into the M’s account.

Owner tracing protocol. When e-cash is overspent or abused by criminals and these

misuse behaviors have been determined or are undergoing investigation by the court,

B or a law enforcement agency can request trustee T to revoke the anonymity of the

e-cash. As we know that e-cash must be presented with a valid license QL, the

requestor therefore submits the QL of the suspected e-cash to T. Upon receiving QL, T

retrieves the corresponding record {U, QL} from its database and successfully reveals

the owner of QL.

15/42

5 System Analysis and Evaluation

 We analyze the proposed system in terms of privacy, security, system functions

and fraud prevention.

5.1 Privacy and Security Analysis

Regarding the privacy and security of the proposed e-cash, the following seven

questions must be answered.

Question 1. (Anonymity Issue) Can a bank link a specific user to e-cash {c, S, R}

between or after a withdrawal process?

In a withdrawal process, bank B first authenticates user U as its account holder to

provide subsequent withdrawal services and finally debit U’s account. Then, if B

can recognize any data items in the yielded e-cash, say c, S or R (all items indeed

are not revealed to B in the withdrawal process.), it would be able to link the

e-cash to the user U. From this observation, we must examine the data items one

by one as follows:

(1) Item c cannot be recognized as it is hidden in the one-way hash function H(.)

and shuffled by both U’s one-time random numbers: secrecy b and blind

factor R', i.e., c is transformed into a blind message M = b(H(c||R||IDBV) + R).

(2) Items S and R cannot be known by B, since U does not reveal them in and

after the withdrawal process.

Question 2. (Anonymity Issue) Is a bank B able to link the returned e-cash, i.e. a

payment record, {c, S, R QL, SIGT(QL), IDBV, PB, k, t, m, Sm}, to any previous

withdrawal transcript, {M, S'}, and thus link it to the identity of user U?

We examine each data item in a payment record as follows.

(1) Item c is just a random string and cannot be linked to any withdrawal

transcripts.

(2) Item S (=aS') reveals nothing about S', since the randomly chosen integer a

makes the variable S uniformly distributed. Thus S cannot be linked to any

specific S'.

(3) Item R (=wR') reveals nothing, since U randomly chooses point R' makes R

uniformly random, and thus cannot be related to any withdrawal transcripts.

(4) The other items {QL, SIGT(QL), IDBV, PB, k, t, m, Sm} are never seen in the

withdrawal message flows, so it cannot be linked to any previous withdrawal

transcripts as well.

16/42

To summarize the analysis of the above two questions, we conclude that the bank

cannot link e-cash to any particular user. Therefore, we claim that the proposed e-cash

system possesses untraceability and thus assure users’ privacy.

Question 3. (Unforgeability Issue) Can user U forge e-cash by only using his/her

registered license QL without the bank’s involvement?

In this case, the user U does not have any advantage since if he/she did so, he/she

would be traced through the disclosure of QL. However, criminals (or malicious

customers) might use a dummy account to gain some advantages. If a criminal

registers a license key w on the trustee, and thereby obtains a valid license QL =

wPB = wxQB, can he successfully forge valid e-cash {c
*
, S

*
, R

*
} by

himself/herself? According to our protocol, the e-cash must pass the e-cash

verification of equation Eq.(1), i.e. ê (H1(IDBV), S
*
) should be equal to ê (QL,

H(c
*
||R

*
||IDBV)) ê (PB, R

*
). We give the derivation in the following.

ê (QL, H(c
*
||R

*|
|IDBV)) ê (PB, R

*
)

= ê (wxQB, H(c
*
||R

*
||IDBV)) ê (xQB, R

*
)

= ê (QB, wxH(c
*
||R

*
||IDBV)) ê (QB, xR

*
)

= ê (QB, wxH(c
*
||R

*
||IDBV)) + xR

*
)

= ê (H1(IDBV), x(wH(c
*
||R

*
||IDBV) + R

*
))

should be equal to ê (H1(IDBV), S
*
).

Thus, if a malicious U first chooses an integer for c
*
 and a G1 element for R

*
, then

the value S
*
 should be equal to x(wH(c

*
||R

*
||IDBV) + R

*
). However, U does not

have the knowledge of bank B’s private key x. So U is unable to forge a valid S
*

to satisfy the verification equation. From another viewpoint, how about the

malicious U first determines c
*
 and S

*
 and then try to find a valid R

*
 to satisfy R

*

= S
*
 ‒ x(wH(c

*
||R

*
||IDBV)). It is obvious that finding R

*
 is hard to due to the

one-way properties of the secure hash function and that U has no information

about B’s private key x.

Question 4. (Unforgeability Issue) Can bank B make e-cash by itself ?

If bank B collects enough spent e-cash including valid license QL, can it use them

and B’s private key x to forge e-cash {c
*
, S

*
, R

*
}? We also observe the equation

expansion in the question 3. When malicious B first determines an integer as c
*

and a G1 element as R
*
, S

*
 cannot be computed as w(xH(c

*
||R

*
||IDBV) + R

*
) due to

that B has no knowledge about w. That is, B cannot extract a license key w from

any collected license QL (= wPB) due to DL assumption.

17/42

Question 5. (Unforgeability Issue) Can an adversary forge valid e-cash ?

From Questions 3 and 4, we can easily see that neither a bank which only

knows x nor a user who only knows w can successfully forge e-cash.

Question 6. Can an adversary reuse an eavesdropped payment transcript to pay the

e-cash?

For this question, we argue that only the e-cash owner with a license key can

generate a valid owner-signature Sm for the payee’s one-time random challenge

K. More specifically, Sm is analogous to the BLS signature where the license key

is the signing key and the license is the verification key. The signature

verification tuple {PB, QL, H(SK||t||m), Sm} can be seen as a VCDH {PB, QL =

wPB, H(SK||t||m) = vPB, Sm = wvPB} tuple for some integer v. Thus, we conclude

that the owner-signature Sm is as secure as the BLS signature which is provably

secure.

Question 7. Can an adversary deposit the e-cash eavesdropped from a payment

transcript to his/her bank account?

For this, we argue that only the merchant who really participates in the payment

transaction can prove that he/she is the payee, because only the true payee knows

the discrete logarithm of K in the transcript (This security is based on DL

assumption.).

5.2 Function Evaluation

We discuss our e-cash system in the features of anonymity, verifiability,

unforgeability, bank-off-line, divisibility, anonymity revocation, over-spending

prevention, and double-depositing prevention. According to the analysis in Sec. 5.1,

our system possesses anonymity and unforgeability and is also

anonymity-revocable through the owner-tracing protocol. In addition, it does not

need an on-line bank when a payer pays. It therefore is a bank-off-line system.

Furthermore, also according to the security analysis, our system can prevent

double-depositing. As for the function of over-spending prevention, the following

three assurances can guarantee the tracing of the over spenders.

1. Our e-cash is unforgeable. This implies that no one, including a valid user

and the bank, can forge e-cash (see the analysis of Question 3 through 5 in

Section 5.1). Valid e-cash must be issued only through a legal withdrawal

process.

2. The payer must be the e-cash owner in a payment, because only the owner

can generate the owner-signature, the response to the payee’s random

18/42

challenge (see the analysis of Question 6).

3. The merchant who can present a valid payment record must be the true

payee in the payment. (Also see the analysis of Question 7)

Under these three guarantees, when e-cash returns, the bank can believe that this

e-cash must be spent by its owner, and that the owner can be traced when needed.

Finally, we discuss the divisibility of our e-cash system. For this issue, we

adopted a user-self-control approach like the one in the works of Chaum [4] and

Fujisaki and Okamoto [19]. We believe that in general, a customer will honestly spend

his/her e-cash instead of overspending it. This stems from the fact that e-cash payment

is a kind of micro payment, and a user will not take the risk of losing his/her credit for

such a small amount of money. Moreover, the above three assurances also guarantee

the correct accumulation of the spent money related to a same c. Once overspending

occurs, the user will inevitably be traced and his/her credit will be broken.

5.3 Computational Load

In Table 2, we compare the proposed license-issuing, withdrawal, and payment

protocols with those of Chen et al.’s [30] in computational load. In the tables, “P”

indicates a pairing computation, “M” a scalar multiplication (which repeatedly adds

an elliptic-curve point for specific times, e.g., cP is P + P + … + P, by adding point P

totally c times), “H” a hash computation, and “E” a symmetric encryption. For

computational comparison, we adopt the BLS signature scheme which needs 1M and

1H for signing, and 2P for verifying as our trustee’s signature SIGT(.). Table 2 shows

the comparison results. As we know that the pairing is expensive in computation time.

The cost of a pairing is about 7.5 times of a scalar multiplication on a 3.0GHz Intel

Pentium 4 [39], and 22 ~ 38 times on ATmega 128L [40, 41]. The other computations

like modular addition, modular multiplications, and elliptic-curve point addition are

minor while compared to paring and scalar multiplication. We thus ignore them in the

comparison.

Table 2. Computational load comparison

 Chen et al.’s[30] Ours

License Issuing
Trustee 1E + 3M + 1H 2M + 1H

User 3P + 1M +1H 2P + 1 H

Withdrawal
Bank 3P + 3M + 1H 1M

User 3P + 4M + 1H 3M + 1 H

Payment
Merchant 3P + 2M + 1H 7P + 2M

User 0 2M

19/42

From Table 2, we see that our license-issuing and withdrawal protocols are better than

Chen et al.’s in computational time. Especially, a user needs not do the

time-consuming pairing in withdrawal phase. Our payment protocol needs 2 scalar

multiplications for the user and 4 more pairings for the merchant. This is because our

payment protocol can resist an adversary reusing any e-cash he eavesdropped while

Chen et al.’s scheme cannot. To sum up, our design achieves the goal that the

computation at the user side is minimized much more.

20/42

6 Implementation

We use ASUS S400CS notebook with CPU Intel i5-3317U, 1.7GHz and 4G

DDR3 memory. The OS is Linux Ubuntu 10.0. Then we refer the website of Stanford

Pairings Based Crypto (PBC) to build PBC library. Before building PBC library, one

must install package M4, GMP library, flex, and bison through “apt-get install” tool.

Then download PCB source codes from the web, extract them and build the library as

follows.

 ./configure

 make

 make install

To verify the library, one can build a sample program, BLS signature.

 gcc bls.c -L. -I/usr/local/include/pbc -lpbc -lgmp

Then run the BLS signature and obtain the result as follows.

yalin@Yalin-S400CA:~/libpbc/example$ a.out < ../param/a.param

Short signature test

system parameter g =

[511267302110836078778360010027131213113670654026572466298919956587480798170120

6279998578005499322237979804815518272161767325759937954811376023943882181005,

214425445631695375300469331197610454682131399254823583306167880725498330186120

2997065050236389577032107239295513644292181363488981963137319080585542009173]

private key = 542559187083824065163733473754519256747925069671

public key =

[520822654980310955221753153234482259236203818177570303347947003305311372172930

1376132039584028061658267261988484532598495357238238176896102687548539221973,

406986460228569599764626921427173158701290707325939952716040330427711626966302

6729113734514777918418252852664280276983591575413943338351976462282613558333]

message hash =

[630807567735233679090628126329498672966163176938701969125777863072058930197565

9247632280684514057571723764287112653870734826839929986584710989244826273472,

614245470100850358118887130787970142648781707433864779641665145805386621936826

5234706270304034263890451990757541502223250918907047682554979511124774751109]

21/42

signature =

[246173939816086888522650850743209096106548661188780158058438995070519216436202

6264713924158259449199309930555941863532657852544755708770237760623103077942,

139561282930240122824108032240448000239607710572875658316851342947817054017088

9284679269142852291134118500899592793476922919176893432610948195432736128712]

compressed =

2F00BB45689DA4706D5823387524B6806E03F1A31923B67C11AA28E8BA857DCEB21E13F

7073D13EC65DC6C444E2EA1CBC3537A787E0267F946FB42E5E9EA6E3600

decompressed =

[246173939816086888522650850743209096106548661188780158058438995070519216436202

6264713924158259449199309930555941863532657852544755708770237760623103077942,

139561282930240122824108032240448000239607710572875658316851342947817054017088

9284679269142852291134118500899592793476922919176893432610948195432736128712]

f(sig, g) =

[807886587534286735001643733402109636069208383315823415341057775087762267534230

4814930020593497277261414623669343859198563687104717448715478287199790485854,

814997088712056477741664337680614175353387303958700919054154956206256803959895

532119338489939166808431254756310916125210987674806418235389079113929993007]

f(message hash, public_key) =

[807886587534286735001643733402109636069208383315823415341057775087762267534230

4814930020593497277261414623669343859198563687104717448715478287199790485854,

814997088712056477741664337680614175353387303958700919054154956206256803959895

532119338489939166808431254756310916125210987674806418235389079113929993007]

signature verifies

x-coord =

2F00BB45689DA4706D5823387524B6806E03F1A31923B67C11AA28E8BA857DCEB21E13F

7073D13EC65DC6C444E2EA1CBC3537A787E0267F946FB42E5E9EA6E36

de-x-ed =

[246173939816086888522650850743209096106548661188780158058438995070519216436202

6264713924158259449199309930555941863532657852544755708770237760623103077942,

738509797036091129419670166234956981341080609368545162786013996978830509070933

3672399356036570371087304654959176788840536358536473884870376729697262096079]

signature verifies on second guess

random signature doesn't verify

 To implement our e-cash program, we adopt type A pairings. Type A pairings are

constructed on the curve y
2
 = x

3
 + x over the field F_q for some prime q = 3 mod 4.

Both G1 and G2 are the group of points E(F_q), so this pairing is symmetric. It turns

22/42

out #E(F_q) = q + 1 and #E(F_q
2
) = (q + 1)

2
. Thus the embedding degree k is 2, and

hence GT is a subgroup of F_q
2
. The order r is some prime factor of q + 1.

7 Conclusion

 E-cash is a desire payment tool which links no information about personal

account numbers or card numbers and is different from typical financial cards,

including credit cards and debit cards. As an interesting result, e-cash solution can

resist online payment frauds arisen from account or card number theft / leakage. This

paper presented an ID-based certificateless e-cash to attain this goal while considering

lower computational load on the user side. Certificateless system can save both the

infrastructure building cost and the transaction processing cost. The analysis and

evaluation show that the proposed e-cash scheme is of security, privacy preservation,

efficiency and is practical for use.

23/42

Reference

[1] http://paysecure.com.tw/Default.aspx?tabid=101&mid=482&ItemId=44.

[2] Ashrafi M. Z. and Ng S. K., Privacy-preserving e-payments using one-time

payment details, Computer Standards & Interfaces 31 (2009) 321–328, 2009.

[3] D. Chaum, Blind Signatures for Untraceable Payments. In Crypto’82, 199-203.

[4] D. Chaum, A. Fiat, M. Naor, Untraceable electronic cash, Proc. Advances in

Cryptology–Crypto’88, 1990, 319–327.

[5] S. Brands, Untraceable off-line cash in wallet with observers, Proc. of Advances

in Cryptology–Crypto’93, LNCS 773, Springer, 1993, 302–318.

[6] J. Camenish, U. Maurer, M. Stadler, Digital payment systems with passive

anonymity-revoking trustee, Proc. of ESORICS’96, 1996, 33–43.

[7] X. Chen, F. Zhang, S. Liu, ID-based restrictive partially blind signatures and

applications, Journal of Systems and Software, 80(2), 2007, 164–171.

[8] Z. Eslami, M. Talebi, A new untraceable off-u electronic cash system, Electronic

Commerce Research and Applications, 10(1), 2011, 59–66.

[9] C. Fan, W. Chen, Y, Yeh, Date attachable electronic cash, Computer

communications, 23 (4), 425–428, 2000.

[10] Y. Frankel, Y. Tsiounis, M. Yung, Indirect discourse proofs: achieving fair

off-line electronic cash, ASIACRYPT’96, LNCS 1163, Springer, 244–251.

[11] Y. Frankel, Y. Tsiounis, M. Yung, Fair Off-Line e-cash Made Easy, Proceedings

of ASIACRYPT’98, LNCS 1514, Springer, 257–270.

[12] G. Fuchsbauer, D. Pointcheval, D. Vergnaud, Transferable constant-size fair

e-cash, Cryptology and Network Security–CANS’09, LNCS 5888, 226–247.

[13] A. Chan, Y. Frankel, P. MacKenzie and Y. Tsiounis, “Misrepresentation of

identities in E-cash schemes and how to prevent it,” ASIACRYPT’96, LNCS

1163, 276–285, 1996.

[14] S.Von Solms and D. Naccache, On blind signatures and perfect crimes,

Computer security, 11(6), 581–583, 1992.

[15] E.F. Brickell, P. Gemmell and D.W. Kravitz, Trustee-based tracing extensions to

anonymous cash and the making of anonymous change, Proc. of the Sixth

Annual Symposium on Discrete Algorithms, ACM/SIAM, 457–466, 1995.

[16] J. Camenish, U. Maurer and M. Stadler, Digital payment systems with passive

anonymity-revoking trustee, Proc. of ESORICS’96, 33–43, 1996.

[17] Y. Frankel, Y. Tsiounis and M. Yung, Indirect discourse proofs: achieving fair

off-line electronic cash, ASIACRYPT’96, LNCS 1163, 244–251, 1996.

[18] Y. Frankel, Y. Tsiounis and M. Yung, “Fair off-line e-cash made easy,”

24/42

ASIACRYPT’98, LNCS 1514, 257–270, 1998.

[19] E. Fujisaki and T. Okamoto, Practical escrow cash system, Proc. of Security

Protocols Workshop 1996, LNCS 1189, 33–48, 1996.

[20] M. Gaud, and J. Traoré, On the anonymity of fair offline e-cash, Computer

aided verification, LNCS 274, Springer, 34–50, 2003.

[21] F. Stalder, Failures and successes: notes on the development of electronic cash,

Inf Soc18(3), 209–219, 2002

[22] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system. Consulted, 1, 2012.

Available: http://www.bitcoin.org/bitcoin.pdf.

[23] G. Zorpette, The beginning of the end of cash. Spectrum, IEEE, 49(6), 27-29,

2012.

[24] M. E. Peck, The cryptoanarchists’ answer to cash. Spectrum, IEEE, 49(6), 50-56,

2012.

[25] Miers, I., Garman, C., Green, M., & Rubin, A. D. (2013). Zerocoin: Anonymous

Distributed E-Cash from Bitcoin. In IEEE Symposium on Security and Privacy.

[26] Reid, F., & Harrigan, M. (2013). An analysis of anonymity in the bitcoin system.

In Security and Privacy in Social Networks (pp. 197-223). Springer New York.

[27] Hufschmitt, E. and Traoré, J., Fair Blind Signatures Revisited, Pairing-based

cryptography–Pairing 2007, LNCS 4575, 268–292.

[28] Popescu, C. and Oros, H., An off-line electronic cash system based on bilinear

pairings, Systems, Signals and Image Processing, 2007.

[29] Wang, S., Chen, Z. and Wang X., A new certificateless electronic cash scheme

with multiple banks based on group signatures. IEEE International Symposium

on Electronic Commerce and Security, 2008.

[30] Chen, Y. L., Chou, J. S., Sun, H. M., and Cho, M. H. A novel electronic cash

system with trustee-based anonymity revocation from pairing, Electronic

Commerce Research and Applications, 10, 6, 2011, 673–682.

[31] Menezes, A.J., Okamoto T. and. Vanstone, S. A, Reducing elliptic curve

logarithms to logarithms in a finite field, IEEE transaction on information theory,

39(5), Sep. 1993.

[32] Koblitz, N. and Menezes A. Intractable problems in cryptography. Proc. of the

9th international conference on finite fields and their applications, Aug. 2010.

[33] Maurer, U.M. and Wolf, S, Diffie-Hellman oracles. Advances in cryptology–

Crypt’96, LNCS 1109, Springer-Verlag, 268–282, 1996.

[34] Boneh, D. and Franklin, M., Identity-based encryption from the Weil pairing,

Proc. of Advances in Cryptology-Crypt’01, LNCS#2139, Springer, 2001, 213–

229.

[35] Boneh, D., Lynnm B. and Shacham H., Short signatures from the Weil

25/42

pairing, Advances in Cryptology–Asiacrypt’01, LNCS 2248, Springer-Verlag,

514–532, 2001.

[36] Menezes, A. Oorschot P. and Vanstone S., Handbook of applied cryptography,

CRC Press,323–330, 1996.

[37] Miyaji, A., Nakabayashi, M., & Takano, S. (2001). New explicit conditions of

elliptic curve traces for FR-reduction. IEICE transactions on fundamentals of

electronics, communications and computer sciences, 84(5), 1234-1243.

[38] Shim, K. A., Lee, Y. R., & Park, C. M. (2013). EIBAS: An efficient

identity-based broadcast authentication scheme in wireless sensor networks. Ad

Hoc Networks, 11(1), 182-189.

[39] Miyaji, A., Nakabayashi, M., & Takano, S. (2001). New explicit conditions of

elliptic curve traces for FR-reduction. IEICE transactions on fundamentals of

electronics, communications and computer sciences, 84(5), 1234-1243.

[40] N. Gura, A. Patel, A. Wander, H. Eberle, S.C. Shantz, Comparing elliptic curve

cryptography and RSA on 8-bit CPUs, in: Proceedings of CHES’04, 2004, 119–

132.

[41] L.B. Oliveira, A. Kansal, B. Priyantha, M. Goraczko, F. Zhao, SecureTWS:

authenticating node to multi-user communication in shared sensor networks, in:

Proceedings of IPSN’08, 2009, 289–300.

26/42

Appendix

I Main Program

//

// ID-Based Certificateless Electronic Cash

//

#include <stdio.h>

#include <pbc.h>

#include <pbc_test.h>

#include <string.h>

#include <time.h>

int main(int argc, char **argv) {

 pairing_t pairing;

 element_t P;

 element_t x, w, y; //x: bank's private key, w: user's license key

 element_t Q_B, P_B, Q_L, Y, H_M2G1, SIG_T;

 element_t temp1, temp2;

 char ID_BV[] = "FCBKTWTP20141231"; //Bank's identity

 unsigned char data[256];

 int i, len;

 element_t a,b,c,tmpr, RR, R, M, SS, S, tmpG1, tmpG2;

 element_t in1[2], in2[2];

 element_t k, K, SK, Sm;

 time_t curtime;

 char datetime[32];

 printf("** E_CASH START **\n");

 pbc_demo_pairing_init(pairing, argc, argv);

 element_init_G2(P, pairing);

 element_init_Zr(x, pairing);

27/42

 element_init_Zr(w, pairing);

 element_init_Zr(y, pairing);

 element_init_G2(Q_B, pairing);

 element_init_G2(P_B, pairing);

 element_init_G2(Q_L, pairing);

 element_init_G2(Y, pairing);

 element_init_G1(H_M2G1, pairing);

 element_init_G1(SIG_T, pairing);

 element_init_GT(temp1, pairing);

 element_init_GT(temp2, pairing);

 printf("\n***");

 printf("\n* Initialization Phase *");

 printf("\n***\n");

 element_random(P);

 element_printf("G2 generator P = %B\n", P);

 //generate trusstee's private key

 element_random(y);

 element_printf("Trustee private key y = %B\n", y);

 element_pow_zn(Y, P, y);

 element_printf("Trustee public Y = %B\n", Y);

 //generate bank's private key

 element_random(x);

 element_printf("Bank private key x = %B\n", x);

 //compute Q_B = H(ID_BV)

 element_from_hash(Q_B, ID_BV, 16);

 printf("Bank ID||VDate = %s\n", ID_BV);

 element_printf("Bank public Q_B = %B\n", Q_B);

 element_pow_zn(P_B, Q_B, x);

 element_printf("Bank public P_B = %B\n", P_B);

28/42

 printf("\n***");

 printf("\n* License Issuing Phase *");

 printf("\n***\n");

 //generate User's license key

 element_random(w);

 printf("\n---\n");

 printf("User -> Trustee :\n");

 element_printf("w = %B\n", w);

 printf("BankName = FIRST BANK\n");

 printf("---\n\n");

 //Compute Q_L & SIG_T(H(Q_L))

 printf("Trustee fetches bank's identity %s, Q_B, P_B\n", ID_BV);

 printf("Trustee Computes license Q_L...\n");

 element_pow_zn(Q_L, P_B, w);

 //Compute SIG_T(Q_L)

 printf("Trustee signs Q_L...\n");

 len = element_length_in_bytes_compressed(Q_L);

 element_to_bytes_compressed(data, Q_L);

 printf("computing the hash of Q_L first\n");

 element_from_hash(H_M2G1, data, len);

 element_pow_zn(SIG_T, H_M2G1, y);

 printf("\n---\n");

 printf("Trustee -> User:\n");

 //element_printf("Q_L = %B\n", Q_L);

 //len = element_length_in_bytes_compressed(Q_L);

 printf("Q_L(%d bytes compressed in HEX) = ", len);

 //element_to_bytes_compressed(data, Q_L);

 for(i=0; i<len; i++) {

 printf("%02X", data[i]);

 }

 printf("\n");

 //element_from_bytes_compressed(Q_L, data);

 //element_printf("decompressed = %B\n", Q_L);

 len = element_length_in_bytes_compressed(SIG_T);

29/42

 //element_printf("SIG_T = %B\n", SIG_T);

 printf("SIG_T(H(Q_L)) (%d bytes compressed in HEX) = ", len);

 element_to_bytes_compressed(data, SIG_T);

 for(i=0; i<len; i++) {

 printf("%02X", data[i]);

 }

 printf("\n");

 //element_from_bytes_compressed(SIG_T, data);

 //element_printf("decompressed = %B\n", SIG_T);

 printf("ID_BV = %s\n", ID_BV);

 len = element_length_in_bytes_compressed(P_B);

 //element_printf("P_B = %B\n", P_B);

 printf("P_B(%d bytes compressed in HEX) = ", len);

 element_to_bytes_compressed(data, P_B);

 for(i=0; i<len; i++) {

 printf("%02X", data[i]);

 }

 printf("\n");

 //element_from_bytes_compressed(P_B, data);

 //element_printf("decompressed = %B\n", P_B);

 printf("---\n\n");

 printf("User verifies SIG_T...\n");

 // compute e(SIG_T, P)

 element_pairing(temp1, SIG_T, P);

 element_printf("computing e(SIG_T, P) = %B\n", temp1);

 // compute e(H(Q_L), Y) should match above

 element_pairing(temp2, H_M2G1, Y);

 element_printf("computing e(H(Q_L), Y) = %B\n", temp2);

 if (!element_cmp(temp1, temp2)) {

 printf("** Signature SIG_T verifies **\n");

 printf("User stores w, Q_L, SIG_T, ID_BV, P_B\n");

 } else {

30/42

 printf("*BUG* signature does not verify *BUG*\n");

 }

 printf("\n***");

 printf("\n* E-Cash Withdrawal Phase *");

 printf("\n***\n");

 element_init_Zr(a, pairing);

 element_init_Zr(b, pairing);

 element_init_Zr(c, pairing);

 element_init_Zr(tmpr, pairing);

 element_init_G2(RR, pairing);

 element_init_G2(R, pairing);

 element_init_G2(M, pairing);

 element_init_G2(S, pairing);

 element_init_G2(SS, pairing);

 element_init_G2(tmpG2, pairing);

 element_init_G2(in2[0], pairing);

 element_init_G2(in2[1], pairing);

 element_init_G1(tmpG1, pairing);

 element_init_G1(in1[0], pairing);

 element_init_G1(in1[1], pairing);

 element_random(c);

 element_printf("User generates a random coin c = %B\n", c);

 element_random(b);

 element_printf("User generates a random blind factor b = %B\n", b);

 element_div(a, w, b); // b tmpG1, S, tmpr);

 element_pairing(temp1, tmpG1, Q_B);

 /// computinf e(H(c||R||ID), Q_L) * e(R, P_B)= w/a (mod r)

 //element_mul(tmpr, a, b);

 //element_printf("--yalin--examine ab =? w mod r, ab = %B\n", tmpr);

 element_printf("User computes blind factor a = w/b (mod r) = %B\n", a);

 element_random(RR);

 element_printf("User generates a random point R' = %B\n", RR);

 element_mul_zn(R, RR, w); //computing R = w * RR

 element_printf("User computes R = w * RR' = %B\n", R);

31/42

 //concatenate c||R||ID_BV

 len = 0;

 len += element_to_bytes(data+len, c);

 len += element_to_bytes(data+len, R);

 strcpy(data+len, ID_BV); len += strlen(ID_BV);

 printf("User concatenates c||R||ID_BV, result lengh = %d\n", len);

 element_from_hash(M, data, len);

 element_printf("H(c||R||ID_BV) = %B\n", M);

 //computes b * (H(c||R||ID_BV)+RR)

 element_add(tmpG2, M, RR);

 element_mul_zn(M, tmpG2, b);

 printf("---\n");

 printf("User -> Bank:\n");

 len = element_length_in_bytes_compressed(M);

 element_to_bytes_compressed(data, M);

 printf("Blind message M (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) {

 printf("%02X", data[i]);

 }

 printf("\n");

 printf("---\n");

 printf("Bank blindly signs on M using its private key x...\n");

 element_mul_zn(SS, M, x);

 printf("---\n");

 printf("Bank -> User:\n");

 len = element_length_in_bytes_compressed(SS);

 element_to_bytes_compressed(data, SS);

 printf("Blind signature S' (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) {

 printf("%02X", data[i]);

 }

 printf("\n");

 printf("---\n");

32/42

 element_mul_zn(S, SS, a);

 element_printf("User unblind S' to get S = %B\n", S);

 //////////// VERIFY E-CASH //////////

 // computing e(S, Q_B)

 element_set1(tmpr);

 element_mul_zn(tmpG1, S, tmpr);

 element_pairing(temp1, tmpG1, Q_B);

 // computing e(H(c||R||ID), Q_L) * e(R, P_B)

 len = 0;

 len += element_to_bytes(data+len, c);

 len += element_to_bytes(data+len, R);

 strcpy(data+len, ID_BV); len += strlen(ID_BV);

 element_from_hash(in1[0], data, len);

 element_mul_zn(in1[1], R, tmpr);

 element_mul_zn(in2[0], Q_L, tmpr);

 element_mul_zn(in2[1], P_B, tmpr);

 element_prod_pairing(temp2, in1, in2, (int)2);

 element_printf("e(S, Q_B) = %B\n", temp1);

 element_printf("e(H(c||R||ID), Q_L) * e(R, P_B) = %B\n", temp2);

 if(!element_cmp(temp1, temp2)) {

 printf("** e-cash signature verifies! ** \n");

 } else {

 printf("* BUG * e-cash signature does not verify *BUG* \n");

 }

 printf("\n***");

 printf("\n* E-Cash Payment Phase *");

 printf("\n***\n");

 element_init_Zr(k, pairing);

 element_init_G2(K, pairing);

 element_init_G2(SK, pairing);

 element_init_G2(Sm, pairing);

 printf("\n---\n");

33/42

 printf("User -> Merchant:\n");

 element_printf("c = %B", c);

 len = element_length_in_bytes_compressed(S);

 element_to_bytes_compressed(data, S);

 printf("S (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) printf("%02X", data[i]);

 printf("\n");

 len = element_length_in_bytes_compressed(R);

 element_to_bytes_compressed(data, R);

 printf("R (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) printf("%02X", data[i]);

 printf("\n");

 len = element_length_in_bytes_compressed(SIG_T);

 element_to_bytes_compressed(data, SIG_T);

 printf("SIG_T (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) printf("%02X", data[i]);

 printf("\n");

 printf("ID_BV = %s\n", ID_BV);

 len = element_length_in_bytes_compressed(P_B);

 element_to_bytes_compressed(data, P_B);

 printf("P_B (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) printf("%02X", data[i]);

 printf("\n");

 printf("---\n\n");

 element_random(k);

 element_printf("Merchant selects a random integer k = %B\n", k);

 element_mul_zn(K, P_B, k);

 element_printf("Merchant computes challange K = k * P_B = %B\n", K);

 printf("---\n");

 printf("Mechant -> User :\n");

 len = element_length_in_bytes_compressed(K);

34/42

 element_to_bytes_compressed(data, K);

 printf("K (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) printf("%02X", data[i]);

 printf("\n");

 printf("---\n");

 element_mul_zn(SK, K, w);

 element_printf("Merchant computes SK = w * K = %B\n", SK);

 time(&curtime);

 strcpy(datetime, ctime(&curtime));

 printf("current date-time t = %s, money to pay m = 35 dollars\n", datetime);

 // computing H_M2G1 = H(SK||t||m) & Sm = w * H_M2G1

 len = 0;

 len += element_to_bytes(data+len, SK);

 strcpy(data+len, datetime); len += strlen(datetime);

 strcpy(data+len, "35"); len += 2;

 element_from_hash(H_M2G1, data, len);

 element_mul_zn(Sm, H_M2G1, w);

 printf("---\n");

 printf("User -> Merchant :\n");

 printf("t = %sm = 35\n", datetime);

 len = element_length_in_bytes_compressed(Sm);

 element_to_bytes_compressed(data, Sm);

 printf("Sm (%d bytes compressed in HEX) = ", len);

 for(i=0; i<len; i++) printf("%02X", data[i]);

 printf("\n");

 printf("---\n");

 //computing SK

 element_mul_zn(SK, Q_L, k);

 element_printf("Mechant computes SK = k * Q_L ＝ %B\n", SK);

 //////////// VERIFY Sm //////////

 printf("Merchant verifies Owner-Sig Sm...\n");

 //computing e(Sm, P_B)

 element_set1(tmpr);

 element_mul_zn(tmpG1, Sm, tmpr);

 element_pairing(temp1, tmpG1, P_B);

35/42

 //computing e(H(SK||t||m), Q_L)

 element_pairing(temp2, H_M2G1, Q_L);

 element_printf("e(Sm, P_B) = %B\n", temp1);

 element_printf("e(H(SK||t||m), Q_L) = = %B\n", temp2);

 if(!element_cmp(temp1, temp2)) {

 printf("** Owner-Sig Sm verifies! ** \n");

 } else {

 printf("* BUG * Owner-Sig Sm does not verify *BUG* \n");

 }

 pairing_clear(pairing);

 return 0;

}

II Program Running Result

yalin@Yalin-S400CA:~/libpbc/e-cash$ run

** E_CASH START **

* Initialization Phase *

G1/G2 generator P =

[487666119482807759550055179592886626733232106514300746517518717364

359875395081268139842198427885155344052913236459133961685469243823

7717238195246093226019,

762490711302429057246733707415408060709568393897876593949439316443

269274301137783565265661248778581468799581438636619571284042151757

6597589227053641209074]

Trustee private key y = 635903116473564397461234714926838056598580820189

Trustee public Y =

[865993400550310835915046144926454917222994842141760448152522765419

357966038219895999678810495125403435241913331847941325932245619254

1331853064127702087429,

473747679512668660693065161639736865611154306369699910767635676834

386113169057593962952030503447318351385557953702734242678567414741

1312327717643997119129]

36/42

Bank private key x = 548436541016353765443383790905715704719289819248

Bank ID||VDate = FCBKTWTP20141231

Bank public Q_B =

[713029847271779280323096769403147641409348123244330220332641765374

787060032525655389005574220397918056737922028311685128725323777322

8531910893969880976921,

442831748101359447326640981315911324001950087098091553568178840019

241452928311577339135739527723121704771946208198544459979858731996

2364069382982313463494]

Bank public P_B =

[822579153778586875959118761346659997832837576288619285659826445979

450265255664699622841092742947745555179792643231596178410772234546

8676572551348750794328,

198216487274692478141821197943884179224692312715956417792806291146

068907216708180251602998915397722330558992819366719961513360280704

4341549020317275727872]

* License Issuing Phase *

User -> Trustee :

w = 246256710187041570016323985253510015150319455623

BankName = FIRST BANK

Trustee fetches bank's identity FCBKTWTP20141231, Q_B, P_B

Trustee Computes license Q_L...

Trustee signs Q_L...

computing the hash of Q_L first

Trustee -> User:

Q_L(65 bytes compressed in HEX) =

60DC89487321F22D9A7B188322ADD18FB8467642F120E8F9EF27050CD63D93B0D

16A4D85568F8AFF4B8C2EA066049178CB71B2DF9E33F558D60329FB9CB2ED0801

SIG_T(H(Q_L)) (65 bytes compressed in HEX) =

37/42

152D3B136E57932659A1A7DC9312FE3EC131EFFB4DB3DB381F784E826B9379869

3068C5C253148CCE62D597D31D50DFC825A430F60FDC43359D9A5E51F75B79A01

ID_BV = FCBKTWTP20141231

P_B(65 bytes compressed in HEX) =

9D0ED4DD2B0F976C1FD6EF823A092C0767EDE18E080D8BF20029BDA71DEEA987

AA95CAACBF629A9605E9556CFBB8D59EB08261F0C3DDFF8B25BE5EA917863E580

0

User verifies SIG_T...

computing e(SIG_T, P) =

[534425198276325538074528345297692052384380525924357411262263334162

124851922302698952613681236125579457128058283766702903979128743327

2715368156679759462034,

517903279555356446191097597360501482925062984078612531259523088433

067157891702577394611042262951299547090956390023395412713315368122

3030543595678289308716]

computing e(H(Q_L), Y) =

[534425198276325538074528345297692052384380525924357411262263334162

124851922302698952613681236125579457128058283766702903979128743327

2715368156679759462034,

517903279555356446191097597360501482925062984078612531259523088433

067157891702577394611042262951299547090956390023395412713315368122

3030543595678289308716]

** Signature SIG_T verifies **

User stores w, Q_L, SIG_T, ID_BV, P_B

* E-Cash Withdrawal Phase *

User generates a random coin c =

229859786435698729346419597517998228279478549616

User generates a random blind factor b =

350147621030694229437750945938883158240074634176

User computes blind factor a = w/b (mod r) =

672221337822737864124167321039711297333182157784

User generates a random point R' =

[208339150251225073180861170688352822904958569850180484887224787779

38/42

454800822898014206375701843616384709730688090412086800528167849733

4936244624736380088883,

700537713448042663242370620838702435409063324206754634512054593192

984555900883104920149359101372339603903259211462056283517330429238

2402142507065117036327]

User computes R = w * R' =

[552019384225144599692600724614386687958705272002502589072080391701

110653318297132371476136500146271622800763785097698183402165881520

6433605079045627524619,

888081159811895433390970648851634982964706155198386326136796705173

026103462060352186779676181762902923917039556573749718857061177779

626988911962722605917]

User concatenates c||R||ID_BV, result lengh = 164

H(c||R||ID_BV) =

[768382638588699176772870915746733646902109736879561865282938387017

546715664778758122846354750336182890789020172922712104825819051864

1710184809118822059561,

719022660030052318116786056849801165111987580490900573682982468792

898740075653417406032973794365904703179904939399987802784539052977

1516059139128091770895]

User computes blind message M = b * (H(c||R||ID_BV)+R') ...

User -> Bank:

Blind message M (65 bytes compressed in HEX) =

4FBDAF5D643C46B1B02A889EE49AD5A847FCD64A4D7965F32E1A8C7625C07FB8B

2CC4D0761CBA816ECA19CFACC2575BF76852E880C9DFC0822C46A266EC0310B00

Bank blindly signs on M using its private key x, generating S'...

Bank -> User:

Blind signature S' (65 bytes compressed in HEX) =

33F429B709506EE625CBD9C4526F85AA7F2FEC6879C59E16148984B8CB898D263

FC005A0B23913FB2BC43D9FC50A6D610E1C26D9AB7436768C6D62EC3332E43501

39/42

User unblind S' to get S =

[944697364895033223248888705842014480473916566985460977823776808364

209959291656405963349991286962686276524130942811432606948110037700

065076792317476132931,

711927088636478628811160727761905351862137478401698085056450474481

812272267504424271835119388068630223507040902571858540309640977374

0758073932590254169601]

e(S, Q_B) =

[845032566366455626836352445298271610137426121678762566870859020042

023267847307130676739867197366396591422081613052181016310854872260

6076145501165710012942,

549370360600825769328763026291678160945237288831374727209105826036

313128606946226250844247186498005170694393578263779410147953909513

4827387542368343456411]

e(H(c||R||ID), Q_L) * e(R, P_B) =

[845032566366455626836352445298271610137426121678762566870859020042

023267847307130676739867197366396591422081613052181016310854872260

6076145501165710012942,

549370360600825769328763026291678160945237288831374727209105826036

313128606946226250844247186498005170694393578263779410147953909513

4827387542368343456411]

** e-cash signature verifies! **

* E-Cash Payment Phase *

User -> Merchant:

c = 229859786435698729346419597517998228279478549616S (65 bytes

compressed in HEX) =

120995A3E4298933CBF2CC52C323CE63EDDFCE062116785939A40221D853C7B03

0065F376909D3B67BC84501D962CB540B76AEE6072DD83B59734B03E788D84301

R (65 bytes compressed in HEX) =

6966253BCAF9DCC9A5376A153D370E731E771BFBA2BEDFBAA402602B1557DDFA

78087858DC4A67274A7A5731AF81F112B8C243C1BB849FBA6AB71F720B8D360B0

1

SIG_T (65 bytes compressed in HEX) =

40/42

152D3B136E57932659A1A7DC9312FE3EC131EFFB4DB3DB381F784E826B9379869

3068C5C253148CCE62D597D31D50DFC825A430F60FDC43359D9A5E51F75B79A01

ID_BV = FCBKTWTP20141231

P_B (65 bytes compressed in HEX) =

9D0ED4DD2B0F976C1FD6EF823A092C0767EDE18E080D8BF20029BDA71DEEA987

AA95CAACBF629A9605E9556CFBB8D59EB08261F0C3DDFF8B25BE5EA917863E580

0

Merchant selects a random integer k =

18649282338605649679143610364743564084513103988

Merchant computes challange K = k * P_B =

[412913546272363167464976483044576119613212585226835436313606656600

493822571034197390308133908888399332640549082312155143676705498360

180576992643301162861,

534655301753509910304372572596421102277742959845735600870346919806

941073558578959541440877647195468286820618429643807074462844612879

1539893320624511125702]

Mechant -> User :

K (65 bytes compressed in HEX) =

07E24784EC17F4DA0C934A4E8867DCA2FE4867850F50BCB11DC2CA8E7568FE57D

FDD59144BDB6DFD4C3BCF0F38D6A6D7BA5C46DC7428AF3200578228634ABF6D0

0

Merchant computes SK = w * K =

[264233210388512968232936937755055870849925035383952005337918855071

191794965027946429005359088116291242770468834356591868091204530100

0484730251535219221754,

216844492079161359973624149302597267242427111004975324786180622714

503171035303652349983871741040452218328256491486886845565148708408

3793886443555136790277]

current date-time t = Sat Aug 30 15:50:50 2014

money to pay m = 35 dollars

41/42

User -> Merchant :

t = Sat Aug 30 15:50:50 2014

m = 35

Sm (65 bytes compressed in HEX) =

A76BC9261FC0B7A5E4F2F145A57B0D8A5256A40FF85B4E9C18EA7DAA5C5611CC5

D64926337DB15D63F3FB3D2EDFC169DFAB3A6DED69660EFBCC95ABC1F9403440

0

Mechant computes SK = k * Q_L ＝

[264233210388512968232936937755055870849925035383952005337918855071

191794965027946429005359088116291242770468834356591868091204530100

0484730251535219221754,

216844492079161359973624149302597267242427111004975324786180622714

503171035303652349983871741040452218328256491486886845565148708408

3793886443555136790277]

Merchant verifies Owner-Sig Sm...

e(Sm, P_B) =

[425068860357981089596962294169322312370887301815531313712574904540

986324376205445741372728372636055241228170806326010130356638150382

3723879076875469041752,

101108532973727731818722120810025248298489972424833633257428130925

788151386421385521321301487875887982634053133179843308035316947615

4408678199591543736626]

e(H(SK||t||m), Q_L) = =

[425068860357981089596962294169322312370887301815531313712574904540

986324376205445741372728372636055241228170806326010130356638150382

3723879076875469041752,

101108532973727731818722120810025248298489972424833633257428130925

788151386421385521321301487875887982634053133179843308035316947615

4408678199591543736626]

** Owner-Sig Sm verifies! **

Merchant verifies E-Cash...

e(S, Q_B) =

[845032566366455626836352445298271610137426121678762566870859020042

023267847307130676739867197366396591422081613052181016310854872260

6076145501165710012942,

549370360600825769328763026291678160945237288831374727209105826036

42/42

313128606946226250844247186498005170694393578263779410147953909513

4827387542368343456411]

e(H(c||R||ID), Q_L) * e(R, P_B) =

[845032566366455626836352445298271610137426121678762566870859020042

023267847307130676739867197366396591422081613052181016310854872260

6076145501165710012942,

549370360600825769328763026291678160945237288831374727209105826036

313128606946226250844247186498005170694393578263779410147953909513

4827387542368343456411]

** E-Cash verifies! **

DigitalSec2014 Y. Chen & J. S. Chou 1

DigitalSec2014 Y. Chen & J. S. Chou 2

Jue-Sam Chou & Yalin Chen
Info. Mgmt., Nanhau University

C & C Info. Security LAB.
ChiaYi, Taiwan

Anonymous
Electronic Cash

Against
CNP & Identity Theft

Yalin Chen and Jue-Sam Chou

DigitalSec2014

Agenda

• Part 1 Background and Motivations

• Part II The Proposed Scheme

DigitalSec2014 Y. Chen & J. S. Chou 4

Taiwanese Payment Methods
for Online Shopping, 2012

DigitalSec2014 Y. Chen & J. S. Chou 5

Data from Taiwan Joint Credit Information Center.

Taiwan Credit Card Frauds

DigitalSec2014 Y. Chen & J. S. Chou 6

2011 $5,634,906 2012 $11,764,320

Data from Taiwan Joint Credit Information Center.

33%

CNP

CNP/EC

• In a typical CNP fraud, for example, a cheater offer

just a victim's Card No, Card’s valid date, and CVC

to an online merchant; then he can complete a

payment transaction without any error alarms.

• Not-Face-to-Face payment usually happened in

the cyber world.

• This is because these card information are easily be

collected by the criminals through
o Trojan Horse, skimming, hacker’s hacking merchant's web site, DB or illegal

deal

DigitalSec2014 Y. Chen & J. S. Chou 7

Australia Plastic Card Frauds

DigitalSec2014 Y. Chen & J. S. Chou 8

2011Q3 $238.8m 2011Q4 $292.8m 2012Q1 $276.7.8m

Data from Australian Payment Clearing Association.

Canada Credit Card Frauds

DigitalSec2014 Y. Chen & J. S. Chou 9

2008 CAD$408m 2009 CAD$358m

9%

CNP

Data from http://www.kubera.cc

UK Credit Card Frauds

DigitalSec2014 Y. Chen & J. S. Chou 10

http://www.popcenter.org/learning/60steps/index.cfm?stepNum=11

Our Countermeasure

DigitalSec2014 Y. Chen & J. S. Chou 11

NOT to Present
Card No. or Identity

Anonymous Electronic Cash

Anonymous Electronic Cash

• Like paper cash which itself is identifiable
o For E-Cash, one can identify it by verifying the issuer’s digital

signature

• Untraceability
o No one can link a presented e-cash to any particular

person; this protects individuals’ privacy

• E-Cash is typically a series of meaningless
bits which link to nothing,

• Not like a card number which always links to
a personal identity.

DigitalSec2014 Y. Chen & J. S. Chou 12

E-Cash Types

Type I: Bank-controlled E-Cash
• Mondex

Type II: P2P- distributed (Bank-free) E-Cash
• Bitcoin

DigitalSec2014 Y. Chen & J. S. Chou 13

Type-I: Bank-Controlled E-Cash

DigitalSec2014 Y. Chen & J. S. Chou 14

Withdraw

$

Shop

User

Deposit

$

Bank

Acquire
Bank

Issuer Bank

Buy & Pay $ Inter-Bank Transaction

Type-I: Bank-Controlled E-Cash

• Trust payment tool, transactions guaranteed

by the banks

• High transaction process fee

• MONDEX
o by National Westminster Bank in the U. K.

o great success in 1990s, absolute anonymity

o But open a perfect channel for criminals to untraceably

transfer their illegal funds

DigitalSec2014 Y. Chen & J. S. Chou 15

Type-II: P2P BitCoin

DigitalSec2014 Y. Chen & J. S. Chou 16

B

B

B
B

B

B

B

B

B

Mine a coin

Exchange
Center Maintain ledger

Maintain ledger

Type II: P2P BitCoin

• Low transaction fee

• Dramatic price  Big risk for the holders

• Hacker attacks  Bigger risk
o 2014/2 the biggest exchange Mt.gox closed due to

850,000 Bitcoins (about $4.8b) stolen by hackers

• Privacy issue
o one may trace sensitive transactions or de-anonymous

social network data through using network topology

DigitalSec2014 Y. Chen & J. S. Chou 17

DigitalSec2014 Y. Chen & J. S. Chou 18

16 Feb 260.4

4 Dec 1230.7

July 90.3

Our Solution

DigitalSec2014 Y. Chen & J. S. Chou 19

ID-Based E-Cash
The system uses issuer’s identity
 URL “Amazon.com”,
 SWIFT/BIC “NWBKGB55”,
 …
As e-cash’s public verification key.

ID-Based Cryptosystem

• A Public Key Cryptosystem

• Cheaper transaction handle fee
o Doesn’t need PKI building, maintenance

o Doesn’t need certificate issuing, maintenance, access

• RSA

DigitalSec2014 Y. Chen & J. S. Chou 20

Public Key

13506641086599522334960321
62788059699388814756056670
27524485143851526510604859
53383394028715057190944175

certificate

Anonymity-evocable E-Cash

• Prevent from money laundry, illegal money transfer

• Legally using e-cash  anonymity maintained

• Illegally using e-cash  anonymity revoked

DigitalSec2014 Y. Chen & J. S. Chou 21

DigitalSec2014 Y. Chen & J. S. Chou 22

NWBKGB55

www.ebay.com

www.amazom.com

Our E-Cash System

Verify E-Cash Using
Public Identity

Issuer/Bank

User

Shop

Trustee

Security Bases
• Elliptic Curve Cryptosystem (ECC)

• G is an additive group over a properly chosen

elliptic curve. When |G|= q is sufficiently large. It

can be used as an ECC.

• DL problem: given a group G=<P> and a random

point Q in G, it is computationally infeasible to find

the integer a such that Q = aP.

• CDH problem: given two random points aP and bP

in G, calculating abP is computationally infeasible.

• A Secure One-Way Hash function H: y = H(x).

DigitalSec2014 Y. Chen & J. S. Chou 23

p.36

Bilinear Pairing

• G1, G2, q, P, e:

• Assume that
o (G1, +) and (G2,．) are two cyclic groups of order q.

o e : G1 X G1→G2.

o P is a generator of G1, e(P, P) is the generator of G2.

• Then

• Bi-linearity: e(aP, bQ) = e (P, Q)ab.

DigitalSec2014 Y. Chen & J. S. Chou 24

DigitalSec2014 Y. Chen & J. S. Chou 25

x Bank’s private key

IDBV bank’s pubic data indicates the bank’s identity
together with a valid period.

QB QB = H1(IDBV) is bank’s public data

PB PB = xQB is bank’s public data

ST(.) Trustee ’s signature on some message

w A user-chosen license key

QL QL = wPB is a license for e-cash

SK a session key shared between the user and
merchant in a payment transaction

 Proposed E-Cash:
Notations

Proposed E-Cash
System Initialization

• Bank B registers its private key x and its identity with

a valid date, IDBV = (IDB,VDB), to the trustee T.

• B then obtains QB = H1(IDBV), PB = xQB and SIGT(QB,

PB), where SIGT(QB , PB) is the trustee’s signature.

• B publish IDBV, PB and SIGT(QB , PB).

DigitalSec2014 Y. Chen & J. S. Chou 26

Proposed E-Cash
License Issuing Protocol

DigitalSec2014 Y. Chen & J. S. Chou 27

w, BankName

1. Selects license key w∈Zq
*.

2.Fetchs the bank’s pubic
 data IDBV, QB, PB.

3.Computes
 QL = wPB,
 signs on QL =ST(QL).
License={QL,ST(QL),IDBV,PB}

QL,ST(QL),IDBV, PB

Trustee

Proposed E-Cash
Withdraw E-Cash Protocol

DigitalSec2014 Y. Chen & J. S. Chou 28

blind message M

1. Selects coin c,
Blind factor R‘, a, b∈Zq

*

 such that ab = w mod q
 R = wR’,
M = b(H(c, R, IDBV) + R).

∈

coin, license-key
coin, license

blind message M

2. Computes S' = xM blind signature S’

coin, license

3. Sigature S = aS'

c, R, S, QL E-Cash=

blind factor

blindly

Proposed E-Cash
Payment Protocol

DigitalSec2014 Y. Chen & J. S. Chou 29

K

4. QB = H1(IDBV), SK = kQL

 Verifies the ownership
 of the license e(PB, Sm) =?
 e(H(SK,t,m), QL).

 Verifies e-cash (QB, S) =?
 e(QL, H(c,R,IDBV)) e(PB,R).
5. Write payment record.

{c, S, R QL, ST(QL), IDBV, PB, k, t, m, Sm}

ST(QL),IDBV,PB

1.

paying $ m

3.Computes SK = wK,
 Sm = wH(SK, t, m)

2. Verifies license,
 Generate a challenge
 K = kPB.

t, m, Sm

merchant

c, R, S, QL

p36

(=kwPB)

Proposed E-Cash
Verification Formula

DigitalSec2014 Y. Chen & J. S. Chou 30

Proposed E-Cash
Deposit Protocol

DigitalSec2014 Y. Chen & J. S. Chou 31

a. Verifies license QL, ST(QL).

b. Verifies the ownership of

 the payment record by

 checking k. /* Bank computes

 SK = k·QL = kwPB and checks

 (PB, Sm) =? (H(SK||t||m), QL) */

c. Verifies E-Cash and the

 ownership of the E-Cash.

If all are valid, it checks

d. Payment record duplicate?

e. E-Cash is over-spent?

{c, S, R QL, ST(QL), IDBV, PB, k, t, m, Sm}

payment record: Merchant Bank

(secure channel)

Accept / Reject

(secure channel)

p37

ê

ê

computing SK = k·QL = kwPB and checking if
(PB, Sm) =
(H(SK||t||m), QL) holds.

ê

ê

computing SK = k·QL = kwPB and checking if
(PB, Sm) =
(H(SK||t||m), QL) holds.

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 32

Q 1. (Anonymity Issue) Can a bank link to a specific user
 by e-cash {c, S, R, QL} between or after a withdrawal
 process?

blind message M

blind signature S’

c, R, S, QL E-Cash=

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 33

Q 2. (Anonymity Issue) Is bank B able to link the returned
 e-cash, i.e. a payment record, {c, S, R QL, ST(QL), IDBV,
 PB, k, t, m, Sm}, to any previous withdrawal transcript,
 {M, S'}, and thus link it to the identity of the user?

blind message M

blind signature S’

Payment record

ST(QL),IDBV,PB

k, t, m, Sm

c, R, S, QL

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 34

Q3. Can user U forge e-cash only by using his/her
 QL in the registered license without the bank’s
 involvement?

Without knowing the bank’s private key x,
U will meet a DL problem in computing
the e-cash component S = x·w·H(c, R, IDBV).

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 35

Q4. (Unforgeability Issue) Can bank B make e-cash by
 itself ?

Without knowing license key w,
B will meet a DL problem in computing
S = w·x·H(c, R, IDBV).

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 36

Q5. (Unforgeability Issue) Can an adversary forge valid
 e-cash ?

From Q 3 and 4, we can easily
see that even a bank which only
knows x or a user who only
knows w, cannot successfully
forge e-cash.

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 37

Q6. Can an adversary reuse an eavesdropped payment
 transcript to pay the e-cash?

He must compute Sm = wH(SK, t, m)
for a new challenge K.
BUT, without knowing the license key w,
 even he knows the SK,
he will meet a CDH problem (p.22) .
That is, he is unable to compute Sm to satisfy the
 license ownership verification(p.28).
i.e.,

 Knowing vPB (=H(SK,t,m)) for some v, and
 QL = wPB, but without knowing the license
 key w
Compute Sm = wvPB = wH(SK, t, m) is a CDH problem

Privacy and Security
Analysis

DigitalSec2014 Y. Chen & J. S. Chou 38

Q7. Can an adversary deposit the eavesdropped e-cash from
 a payment transcript to his/her bank account?

Only the merchant who knows the
discrete logarithm of challenge K
in the transcript can let the bank successively
verify the ownership of the payment record in
the deposit protocol (p.30) .
Therefore, he will
 meet a DL problem in computing SK = k·QL

To pass the verification
 e(PB, Sm) =? e(H(SK||t||m), QL) .

Conclusions

• Q1 to Q7 shows the security and privacy preservation of

the proposed E-Cash.

• The proposed E-Cash is an ID-based system

 free from PKI building, maintenance, and access,

 and thus lower the transaction cost.

• The proposed E-Cash has anonymous property and thus

links to nobody.

 Therefore is no card No., no identity…

 can be stolen.

 DigitalSec2014 Y. Chen & J. S. Chou 39

Thank You

Q & A

DigitalSec2014 Y. Chen & J. S. Chou 40

科技部補助計畫衍生研發成果推廣資料表
日期:2014/07/21

科技部補助計畫

計畫名稱: 防帳卡號被盜之低成本免憑證電子錢網路付款可行性方案研究

計畫主持人: 周志賢

計畫編號: 102-2221-E-343-004- 學門領域: 資訊安全

無研發成果推廣資料

102年度專題研究計畫研究成果彙整表

計畫主持人：周志賢 計畫編號：102-2221-E-343-004-

計畫名稱：防帳卡號被盜之低成本免憑證電子錢網路付款可行性方案研究

量化

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際已
達成數)

本計畫實

際貢獻百
分比

單位

備 註 （ 質 化 說

明：如數個計畫
共同成果、成果
列 為 該 期 刊 之
封 面 故 事 ...
等）

期刊論文 0 0 100%

研究報告/技術報告 0 0 100%

研討會論文 0 0 100%

篇

論文著作

專書 0 0 100%

申請中件數 0 0 100%
專利

已獲得件數 0 0 100%
件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元

碩士生 0 0 100%

博士生 0 0 100%

博士後研究員 0 0 50%

國內

參與計畫人力

（本國籍）

專任助理 0 0 100%

人次

期刊論文 0 0 100%

研究報告/技術報告 0 0 100%

研討會論文 1 1 100%

篇
獲邀擔任 Plenary
Speakers

論文著作

專書 0 0 100% 章/本

申請中件數 0 0 100%
專利

已獲得件數 0 0 100%
件

件數 0 0 100% 件
技術移轉

權利金 0 0 100% 千元

碩士生 0 0 100%

博士生 0 0 100%

博士後研究員 0 0 100%

國外

參與計畫人力

（外國籍）

專任助理 0 0 100%

人次

其他成果

(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。)

獲得優秀論文獎狀一張。

 成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0

課程/模組 0

電腦及網路系統或工具 0

教材 0

舉辦之活動/競賽 0

研討會/工作坊 0

電子報、網站 0

科
教
處
計
畫
加
填
項
目 計畫成果推廣之參與（閱聽）人數 0

科技部補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標（請說明，以 100字為限）

□實驗失敗

□因故實驗中斷

□其他原因

說明：

2. 研究成果在學術期刊發表或申請專利等情形：

論文：■已發表 □未發表之文稿 □撰寫中 □無

專利：□已獲得 □申請中 ■無

技轉：□已技轉 □洽談中 ■無

其他：（以 100字為限）

3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價
值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500字為限）

目前，安全的行動支付工具，已是零售電子商務業者和平台必爭的利器；而

提供相關支援的軟硬體備廠商等也競相提出各種解決方案。一個電子支付的

場景如下，使用者用手機掃瞄產品的商品 QRCode，之後在透過第三方支付

工具扣款，或者利用智手機下載 QRCode的 App服務，並完成身份認證與鍵

入信用卡號後，能隨時用手機行動消費。又例如，手機 Android系統推出 TSM

（Trusted Service Manager）平台，讓使用者將信用卡號是鍵入手機內

SWP-SIM 卡，作為行動支付運作的核心關鍵；蘋果 iOS 系統，在 iPhone 6

推出 App Pay服務，準備和 Android TSM相競抗衡。

 在這樣的背景下，本研究提出的方法和實作正可以提供業者一個安全演

算法的選擇。我們的方法除了和 RSA公開金鑰密碼系統一樣安全外（基於計

算複雜理論），它的金鑰長度只需要 RSA 金鑰長度的五分之一以下，而且我

們的方法是 ID-Based公開金鑰密碼系統，也就是說允許用身分識別作為公開

金鑰，例如 Gmail帳號，銀行的 SWIFT代碼，業者的官方網址等等。所以，

我們的方法承接了 ID-Based公開金鑰密碼系統的好處，它不需要建置昂貴的

“公開金鑰基礎建設＂（Public Key Infrastrucute，PKI）來驗證不可讀的“公

開金鑰＂。

RSA公開金鑰：

 Public exponent:

 0x10001

 Modulus:

13506641086599522334960321627880596993888147560566702752448514

38515265106048595338339402871505719094417982072821644715513736

80419703964191743046496589274256239341020864383202110372958725

76235850964311056407350150818751067659462920556368552947521350

08252879463773285339061097505443349998111500569772368909275623

ID-Based公開金鑰：

 Public key:

 Alice@xxx.com

 更進一步說，本研究允許全球知名的企業例如 Amazon、Westminster

Bank、Citybank，eBay、拉里巴巴等，或地區知名的企業例如 PChome、Yahoo、

義美、台灣銀行等，用其組織的 URL（例如網址）發行自己的匿名電子錢。

也就是讓一些非銀行組織也可擔任第三支付的角色，以活化電子商務金流的

快速流動並降低處理成本。本研究另一個結論是，比起交易成本最低的比特

幣（Bitcoin），我們的方法提供更安全的電子支付，其處理成本比起現行的信

用卡或透過銀行組織的各式帳卡低廉許多。

