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ABSTRACT 
A unified of capability indices, containing the indices Cp, Cpk, Cpm, and Cpmk, has earlier 

been defined by Spiring [6] for the case of two-sided specification intervals. In this paper, we 
investigate several properties of the estimators of the indices for different values of the weight 
function when the tolerances are symmetric. Again, we study the statistical properties of the 
natural estimator of Cpw (In Spiring [6] a family of capability indices, depending on a weight 
function, w, with symmetric tolerances) and an explicit form of the probability density 

function of pwĈ  under the assumption of normality and in statistical controlled. 
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1. Introduction 

Process capability indices (PCIs) are now embraced by a wide variety of industries 
interested in assessing the ability of a process to meet customer’s requirements. When used 
correctly these indices provide a measure of process performance that in turn can be used in 
the ongoing assessment of process improvement. The most common process capability 
indices assume T to be the midpoint of the specification limits and include 

    Cp = (USL﹣LSL)/(6σ), (1.1) 

    Cpk =min{USL－μ, μ－LSL}/(3σ) = ( 1– k )Cp, (1.2) 

and Cpm =(USL– LSL)/( 6(σ2 + ( μ–T )2 )1/ 2 ), (1.3) 

If the characteristic of the process is symmetrically distributed then a shift towards the 
specification limit, when σ is fixed, which is closest to the target value will give rise to a 
larger expected proportion of non-conforming than the corresponding shift towards the middle 
of the specification interval. Therefore, a shift towards the specification limit which is closest 
to the target value should be considered more serious and give rise to a lower index value than 
the corresponding shift towards the middle of the specification interval. 

Chan et al. [4] considered a generalization of Cpm for process with asymmetric tolerances 
shift one of the two specification limits. 
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To obtain a capability index, which is more sensitive than Cpk and C pm with regard to 
departures of the process mean, μ, from the target value, T, Pearn et al. [5] defined a so-called 
third generation of capability index, Cpmk, which is defined by  

    Cpmk =
2222 )(3)(3

),min(

T

md

T
LSLUSL

−+

−−
=

−+

−−

µσ

µ

µσ

µµ = ( 1– k)Cpm. (1.4) 

Thomas Mathew et al.[9] point out that results of calculations of PCIs should always be 
qualified via confidence intervals, with a discussion of the impact of the sample size and 
sampling scheme on the index estimation. It appears difficult to obtain exact confidence 
intervals for PCIs based on conventional methods, and only approximate or asymptotic 
confidence intervals are available in the literature for most PCIs( more detail discussion in 
Kotz and Lovelace [6] ). An extensive bibliography of papers on PCIs during the period 
1990–2002 is available in Spiring et al. [8]. 

In Spiring [7] a family of capability indices, depending on a weight function, w, with 
symmetric tolerances is defined as follows: 

    Cpw =
22 )(6 Tw

LSLUSL

−+

−

µσ
. (1.5) 

We gain the four indices Cp, Cpk, Cpm, and Cpmk by setting w as follows: 
  (1) Setting w = 0, then Cpw = Cp. (1.6) 
  (2) Setting w = 1, then Cpw = Cpm. (1.7) 

  (3) Setting w = 22

11
)1(

1
pk 








−

−
, where p = T−µ /σ is denote a measure of “ off- target”, 

then as follows: 

     (a) If k = m−µ /d, then Cpw = Cpk. (1.8) 

     (b) If k = T−µ /d = k ′ , then Cpw = pkC ′ . (1.9) 

  (4) Setting w = 
222 )1(

111
)1(

1
kpk −

+









−

−
, then Cpw = Cpmk. (1.10) 

 

In this article, we study the behavior of the indices in this family with respect to different 

aspects. Moreover, we consider estimators of the proposed class and derive an explicit form of 

the distribution of the estimator pwĈ  for different values of the weight function, such as the 

behavior of its distribution, and the r-th moment, under the assumption of normality. 
Whereas, the demonstrate form of the distribution for the class estimated indices under 

study could be viewed as an interesting and useful result in the statistical distribution theory, 
involving a rational function of central and non-central chi-squared distributions in this 
literature, when deciding on a capability index to be utilized. 
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2. The sampling distribution of pwĈ  

Let Xi , i = 1, 2,‥．, n be a random sample from a normal distribution with mean μ and 

variance σ2 measuring the characteristic under study. Analogously the estimator of Cpm 

devised by Boyles [2] as 

    pwĈ =
22 )(3 TXwS

d

n −+
, (2.1) 

where the mean μ is estimated by the sample mean and the variance σ2 is estimated by 

its maximum likelihood estimator, i.e., 

    nXX n

i i /
1∑ =

= , and ∑ =
−=

n

i in nXXS
1

22 /)( . (2.2) 

Under the assumption of normality, to derive the distribution of pwĈ
, where pwĈ

 is 

given in (2.1), then this notation the estimator pwĈ
 becomes: 

    pwĈ =
YwK

D
+3

, (2.3) 

where D= n d/σ, K = n
2
nS /σ2, Y = n( X – T )2/σ2, K is independent with Y, and K is a 

central chi-square distribution with n – 1 degrees of freedom, 
2

1−nχ , Y is a non-central 

chi-square distribution with 1 degree of freedom and non-central parameter λ = δ2 = n( μ– 

T )2/σ2, 
2

1χ ′
(λ). 

By Johnson et al. [5], a non-central chi-square distribution with 1 degree of freedom and 

non-central parameter λ can be written as a mixture of central chi-square distribution with 1 + 

2 j degrees of freedom and corresponding Poisson weights Pj, where 

    Pj(λ/2) =
!

)2/(2

j
e jλλ−

,  j = 0, 1, 2,‥．. (2.4) 

Let Yf  denotes the probability density function of Y can be expressed as  

    Yf = )(
0

yfP
jYj j∑∞

=
, (2.5) 

where Yj is a central chi-square distribution with 1 + 2 j degrees of freedom. 
Using the notation above we state the following theorem. 

Theorem 1: 
When the characteristic of the process is normally distributed the cumulative distribution 

function of pwĈ , for w > 0, is as follows: 

- 41 - 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

管理科學研究 Vol.10, No.1, 2016 

)(ˆ xF
pwC

=






>







−−

≤

∫
)9/(

0 2

222

.0,)(
9

1

,0                                         ,0
xwD

YK xydyfyw
x

DF

x
 (2.6) 

Proof:  
Using representation (2.3) and conditioning on Y, for w > 0, we obtain 
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The last equality in (2.7) valid since P( K < (D 2/( 9x2) ) – w y ), for y > D 2/( 9wx2). 
Rearranging the last equality in (2.7) we obtain 
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
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− , x > 0. (2.8) 

The proof of (2.6) for x > 0 and w > 0 is thus complete. 

To gain the probability density function of pwĈ  we first observe that the cumulative 

distribution function of pwĈ  is a continuous function of x. 

Theorem 2: 

When w > 0, and x > 0 then the characteristic of the process is normally distributed the 

probability density function of pwĈ
 becomes: 
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pwC = );,(
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λ , (2.9) 

where 1F1( a, b; z) = Γ( b )/( Γ(a)Γ(b – a) )× dtett tzaba 11

0

1 )1( −−− −∫  is the Kummer 

confluent hypergeometry function ( see Abramorwitz and Stegun, [1]) with parameter a =( 1 
+ 2 j )/2 , b = ( n + 2 j )/2 , z = ( w – 1) D 2/( 18w x2) , D = n d/σ. 
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Proof : 

Taking the derivative of )(ˆ xF
pwC

 in (2.6) with respect to x, we get 

)(ˆ xf
pwC  = ydyfwy

x
Df

x
D

Y
xw

D

K )(
99

2 2

2

9
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2
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2

∫ 




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 − ,  x > 0. (2.10) 

Changing the variable 
            t = ( 9w x2 ) y /D 2, (2.11) 

in the integral in (2.10) we can write 

)(ˆ xf
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 − , x > 0. (2.12) 

Since Y can be expressed as a mixture of central chi-square distribution with 1 + 2 j 

degrees of freedom and corresponding Poisson weights Pj(λ/2), and K is distributed as 2
1−nχ . 

We can rewrite (2.12) using the expression for the probability density function of the 

chi-square distribution to obtain the result in (2.9). The proof is thus complete. 

 
Corollary 1: 

When the process is on target, i.e., μ = T, which is equivalent to λ = 0, the cumulative 

distribution function of pwĈ is obtain from theorem 1 by replacing the probability density 

function Yf ( y ) in (2.6) by 

        2

2
1

0

y

Y e
y

f
−

×=
π

,  y > 0. (2.13) 

Corollary 2: 

When the process is on target, i.e., μ = T, which is equivalent to λ = 0, the probability 

density function of pwĈ , for w > 0, simplifies to 

)(ˆ xf
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π
,  x > 0. (2.13) 

Further, when we have a two-sided specification interval the case when T = m is quite 

common in practical situations. 
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Corollary 3: 
When the process is on target, i.e., μ = T, or equivalently λ = 0, with symmetric 

tolerances, the probability density function of pwĈ , for w > 0, simplifies as follows: 

)(ˆ xf
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= 

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 −
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,
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e
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nx
Dn

π
,    x > 0. (2.14) 

3. Expected Value, Variance, and Mean Square Error( MSE )  

By the same technique of Ĉ pmk, the r-th moment of pwĈ can be obtains as 

    E( ( pwĈ ) r ) = ( ) 2

3
r

r

wYKED −+





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Under the assumption of normality, Yj is distributed as 2
21 j+χ , K is distributed as 2

1−nχ , 

and K is independent with Yj. Let Tj =Yj /(K+Yj) is distributed as Beta 





 −+

2
1,

2
21 nj , and 

Wj = K + Yj is distributed as 2
2 jn+χ  then we have that Wj is independent with Tj. Hence 
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where 2F1( a, b, c; z ) is the Gaussian hypergeometry function with parameter a = r/ 2, b 
= ( 1+ 2 j )/ 2, c = ( n + 2 j )/ 2, and z = 1 – w. Then, equation (5.1) becomes: 

E( ( pwĈ ) r ) =
rD
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






23
×






∑

∞

=

−
j

j j
e

2!0

2 λ
λ

);,,(

2
2

2
2

12 zcbaF
jn

rjn

×






 +

Γ







 −+

Γ
. (3.3) 
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Setting r = 1, and r = 2, we can obtain the expected value and variance of pwĈ as 

follows: 

E( pwĈ ) = 
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1

12 . (3.5) 

The variance of pwĈ is now obtained as 

    Var( pwĈ ) = E( ( pwĈ )2 ) – ( E( pwĈ ) )2. (3.6) 

Since the estimator pwĈ  is biased the mean square error of the estimator might be more 

relevant to investigate than the variance. 

    MSE ( pwĈ ) = Var( pwĈ ) + ( E( pwĈ ) – Cpw )2 

              = E( ( pwĈ )2 ) + (Cpw )2 – 2 Cpw E( pwĈ ), (3.7) 

4. Discussion  

As a general rule, we have a two-sided specification interval the case when T = M is 
quite common in practical situations. In the class of indices studied we are looking for an 
index that is sensitivity to departure from the target value, T, especially in the case when b is 
bigger. 

According to Vännman [10] suggestion for obtaining meaningful indices is suited to the 
following two criterions. 
1. Only indices will small bias and small MSE will be considered, when the process is on 
target. 
2. Among the possible w-value obtained, indices will be chosen with regard to their sensitivity 

to departures from the target value in the sense that the expected value of the estimator of 
the index ought to be sensitivity to departures from the target value, especially in the case 
of large b. And then, the MSE also will be taking into consideration, when the process is 
not on target. 

To explore the behavior of the estimator for different values of w the expected values, the 
relative biased values, and the mean square errors were calculated, using Maple V software, 
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for different values of the parameters 

w,  n,  a = 
σ
µ T−  , and  b = 

σ
d ,  

we did calculate using a = 0(0.5)2, b = 2(1)6, n = 10(20)50 and w = 0(1)5. 
If it is of interest to have a capability index that is very sensitive with regard to 

departures of the process mean, μ, from the target value, T, then the values of w in ( 1.5 ) 
should be large. In Figure 1 some plots Cpw(w) are given for some w values, using 
Mathematica software. 

The indices have been expressed in the two variables e = 1/ b and f = T−µ /d in 

Figure 1, and the surface describing the index to make easy comparisons of the indices. From 
Figure 1 we can see how the sensitivity, with regard to departure the process mean, μ, from 
the target value, T, rely on w. 
 

Cpw(0) Cpw(1) 

Cpw(2) Cpw(3) 
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Figure 1:  The capability indices Cpw(w), w=0(1)6 as surface plots with 
b= d/σ =1/e,  f =∣μ–T｜/d. 

In Table 1 we can see, when the process is not on target, a > 0, the bias of Cpw( 4 ) is 
positive, for n = 10, 20, 30. And then, in Table 1 the relative bias of Cpw(w), when a = 0, can 
be positive or negative, is given for n = 10(20)50, b = 2(1)6, and w = 0(1)6. 

 
Table 1 : The Relative bias of Cpw( 4 ), when n = 10, 20, 30. 

       a     
 b 0 0.5 1 1.5 2 
 2 -0.018281  0.037205  0.023496  0.009368  0.004285  
 3 -0.027421  0.055807  0.035246  0.014051  0.006428  

n = 10 4 -0.036562  0.074410  0.046994  0.018735  0.008571  
 5 -0.045702  0.093011  0.058744  0.023419  0.010713  
 6 -0.054843  0.111618  0.070488  0.028103  0.012856  
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Table 1 : The Relative bias of Cpw( 4 ), when n = 10, 20, 30. (cont.) 

 2 -0.014709  0.020110  0.011046  0.004418  0.002064  
 3 -0.022064  0.030165  0.016571  0.006627  0.003096  

n = 20 4 -0.029418  0.040258  0.022094  0.008836  0.004127  
 5 -0.036773  0.050275  0.027618  0.011045  0.005159  
 6 -0.044127  0.060330  0.033078  0.013253  0.006191  
             2 -0.011521  0.015288  0.008131  0.002892  0.001360  
 3 -0.017281  0.022932  0.012196  0.004338  0.002039  

n = 30 4 -0.023042  0.030575  0.013939  0.005785  0.002719  
 5 -0.028802  0.038219  0.018291  0.007231  0.003399  
 6 -0.034563  0.045863  0.021949  0.008677  0.004079  
 
We see from Table 2 that, when the process is on target, the relative bias is negative and 

quite large in absolute value when w is large. The relative bias of Cpw in absolute value is 
decreasing, when n or b is increasing and fixed w. 

 
Table 2: The Relative bias of Cpw( w ), when the process is on target. 

        w      
 b 0 1                     2 3 4 5 6 
 2 0.102288  0.055815  0.024987  0.001216  -0.018281  -0.034858  -0.049297  

 3 0.153432  0.083722  0.037480  0.001824  -0.027421  -0.052288  -0.073945  

n = 10 4 0.204576  0.111630  0.049973  0.002432  -0.036562  -0.069717  -0.098593  

 5 0.255720  0.139537  0.062467  0.003040  -0.045702  -0.087146  -0.123242  

 6 0.306864  0.167445  0.074960  0.003648  -0.054843  -0.104575  -0.147890  

          2 0.029586  0.017266  0.006576  -0.002921  -0.011521  -0.019394  -0.026667  

 3 0.044380  0.025899  0.009864  -0.004381  -0.017281  -0.029091  -0.040001  

n = 30 4 0.059173  0.034533  0.013152  -0.005842  -0.023042  -0.038789  -0.053335  

 5 0.073966  0.043166  0.016441  -0.007302  -0.028802  -0.048486  -0.066668  

 6 0.088759  0.051799  0.019729  -0.008762  -0.034563  -0.058183  -0.080002  

          2 0.017300  0.010213  0.000958  -0.002296  -0.007924  -0.013206  -0.018194  

 3 0.025950  0.015319  0.001437  -0.003444  -0.011885  -0.019810  -0.027291  

n = 50 4 0.034600  0.020426  0.001915  -0.004592  -0.015847  -0.026413  -0.036389  

 5 0.043250  0.025532  0.002394  -0.005740  -0.019809  -0.033016  -0.045486  

 6 0.051900  0.030638  0.002873  -0.006887  -0.023771  -0.039619  -0.054583  
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In Table 3 the values, when a = 0, of the MSE(Cpw(w) ), are given for n = 10(20)50, b = 
2(1)6, and w = 0(1)6. We see from Table 2 that, when n = 10(20)50, the smallest values of the 
mean square error are obtained for w = 1, 2, 3, 4, but the MSE does not vary too much close 
to these values. We also see from Table 3 that large values of w cause large MSE and hence 
indices with large values of w are not suitable to use. 

For example, choosing the indices with the four smallest mean square errors for b = 

2(1)6 and n = 10(20)50 from Table 3 will give us w = 1, 2, 3, 4. 

 
Table 3 : The MSE of Cpw( w ), when the process is on target. 

        w      
 b 0 1 2 3 4 5 6 
 2 0.054092  0.036691  0.032632  0.032077  0.032997  0.034641  0.036662  

 3 0.121707  0.082555  0.073422  0.072173  0.074243  0.077941  0.082490  

n = 10 4 0.216369  0.146765  0.130527  0.128307  0.131988  0.138562  0.146648  

 5 0.338076  0.229321  0.203949  0.200479  0.206231  0.216504  0.229138  

 6 0.486830  0.330222  0.293687  0.288690  0.296972  0.311765  0.329958  

          2 0.009934  0.008724  0.008405  0.008566  0.009043  0.009724  0.010545  

 3 0.022352  0.019630  0.018910  0.019273  0.020346  0.021879  0.023726  

n = 30 4 0.039736  0.034897  0.033618  0.034263  0.036171  0.038896  0.042180  

 5 0.062088  0.054527  0.052528  0.053536  0.056517  0.060775  0.065907  

 6 0.089407  0.078519  0.075641  0.077091  0.081384  0.087516  0.094906  

          2 0.005302  0.004901  0.004480  0.004895  0.005126  0.005473  0.005903  

 3 0.011930  0.011028  0.010080  0.011013  0.011532  0.012315  0.013281  

n = 50 4 0.021209  0.019606  0.017920  0.019579  0.020502  0.021894  0.023610  

 5 0.033139  0.030634  0.028000  0.030592  0.032034  0.034209  0.036891  

 6 0.047720  0.044113  0.040320  0.044053  0.046130  0.049260  0.053123  

5. Sensitivity Analysis 

Next, we compare the indices, among those obtained above, with regard to their 
sensitivity to departures from the target value. From Table 4 we see that w = 1, 2 will give us 
the index is least sensitivity to departures from the target value when b is large, and hence we 
exclude that case. 
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Table 4 : The expected value of Cpw( w ), when n = 10. 
   w = 1     w = 2   
   a     a   
b 0 0.5 1 1.5 2 0 0.5 1 1.5 2 
2 0.722482 0.644322 0.501133 0.385603 0.306734 0.691653 0.582389 0.414817 0.305528 0.206387 
3 1.083722 0.966483 0.751700 0.578405 0.460101 1.037480 0.873583 0.622226 0.474766 0.342717 
4 1.444963 1.288644 1.002266 0.771206 0.613468 1.383307 1.164778 0.823052 0.633022 0.456956 
5 1.806204 1.610805 1.252833 0.964008 0.766835 1.729133 1.454873 1.025133 0.763820 0.571194 
6 2.167445 1.932966 1.503399 1.156809 0.920202 2.074960 1.747166 1.234578 0.872412 0.685433 
   w = 3     w = 4   
2 0.667883 0.540112 0.357398 0.249822 0.189802 0.648386 0.508609 0.321638 0.220186 0.165976 
3 1.001824 0.810148 0.536104 0.374734 0.284703 0.972579 0.762914 0.482459 0.330279 0.248964 
4 1.335765 1.080209 0.714795 0.499645 0.379603 1.296772 1.017219 0.643279 0.440372 0.331952 
5 1.669707 1.350261 0.893494 0.624556 0.474504 1.620964 1.271522 0.804100 0.550465 0.414940 
6 2.003648 1.620313 1.072198 0.749467 0.569405 1.945157 1.525832 0.964915 0.660558 0.497927 

 
Therefore, we finish with the two indices corresponding to w = 3 and 4, which are nearly 

equivalent with regard to mean square errors and sensitivity to departures from the target 
value. But again, we see from Table 1, the estimator Cpw(4) is rather more sensitivity to 
departures from the target value but will induce a small and negative bias, for n = 10(20)50, 
while Cpw(3) is almost unbiased. And then, we see from Table 5 that the mean square error of 
the Cpw(3) and Cpw(4) are almost equivalent. 
 

Table 5 : The MSE of Cpw( w ), when n = 10. 
   w = 1     w = 2   
     a       a   
b 0 0.5 1 1.5 2 0 0.5 1 1.5 2 
2 0.036691 0.028202 0.013004 0.004948 0.002016 0.032632 0.027672 0.007853 0.001779 0.010859 
3 0.082555 0.063454 0.029258 0.011133 0.004536 0.073422 0.062261 0.017672 0.018053 0.002343 
4 0.146765 0.112807 0.052014 0.019792 0.008063 0.130527 0.110686 0.041548 0.032099 0.004456 
5 0.229321 0.176261 0.081272 0.030925 0.012599 0.203949 0.175939 0.072012 0.011120 0.006962 
6 0.330222 0.253816 0.117032 0.044532 0.018143 0.293687 0.249045 0.093494 0.059377 0.010025 

   w = 3     w = 4   
2 0.032077 0.029273 0.010738 0.002821 0.000926 0.032997 0.030599 0.010071 0.002354 0.000734 
3 0.072173 0.065895 0.024154 0.006347 0.002083 0.074243 0.068847 0.022659 0.005296 0.001652 
4 0.128307 0.117122 0.042954 0.011284 0.003703 0.131988 0.122394 0.040282 0.009414 0.002937 
5 0.200479 0.183004 0.067115 0.017631 0.005786 0.206231 0.191245 0.062939 0.014710 0.004588 
6 0.288690 0.263525 0.096635 0.025387 0.008332 0.296972 0.275377 0.090641 0.021182 0.006607 

 
It is important to note that, when n is increasing, the mean square error for all estimators 

is decreasing. Also we can be seen from Table 6, which gives the square root of the mean 
square error for Cpw(4) for some parameter values. In this paper, we investigated the statistical 
properties of the natural estimator of Cpw, the exact distribution, r-th moment and the behavior 
of the expected value and the mean square error, when deciding which of the capability 
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indices to use, assuming that the process is normally distributed. 
 

Table 6 : The square root of the MSE for Cpw( 4 ) and corresponding index, for a = 0, 1, 2, b = 
3, 5 and n = 10, 30, 50. 

  ( MSE(Cpw( 4 ) ) ) 1/2 

a b Cpw( 4 ) n = 10 n = 30 n = 50 
0 3 1.000 0.272 0.143 0.107 
1 3 0.447 0.151 0.073 0.054 
2 3 0.243 0.041 0.022 0.017 
0 5 1.667 0.454 0.238 0.179 
1 5 0.745 0.251 0.121 0.090 
2 5 0.404 0.068 0.036 0.028 
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