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演算法於無線環境之資料廣播問題 

 

學生：邱美倫                                指導教授：吳光閔  

 

南華大學資訊管理學系碩士班  

 

摘 要  

 

在無線環境中，使用廣播方式傳送資料是一種有效率傳輸模式。在

此環境下，伺服端連續且不斷的廣播資料，讓使用者擷取自己所需的資

料。因此伺服端如何決定廣播頻道上的資料順序，讓使用者的總存取時

間達到最小，是個很重要的議題。過去多數的研究只考慮到一筆查詢

(query)只有包含一個資料項(單一資料項)，而忽略現實生活中使用者

的要求多半會包含兩個以上的資料項(多重資料項)。故本研究針對無線

廣播通道環境下，且使用者多重要求資料項時，提出A
*
演算法找出資料

項的廣播排程，以降低使用者接收資料項所需的時間。由實驗結果證明

我們所提出的方法較QEM演算法[14]好。 

 

 

 

 

 

  關鍵字: 資料廣播、總存取時間、多重資料項 



 ix

 
Using A*Algorithm for Data Broadcast in Wireless 

Environment 
 

 
Student: Mai-Lun Chiu                  Advisor: Dr. Guang-Ming Wu  

 
 

Department of Information Management  

The M.B.A Program  

 Nan-Hua University  

 

 

ABSTRACT  

 

Data Broadcasting is an efficient communication model when clients 

request data from a server in wireless environment. Data is delivered by a 

server downstream with a wide bandwidth. All clients keep listening to the 

broadcast channel and catch the data that interest them. The important issue of 

designing a proper broadcast schedule is to reduce the clients’ total access 

time. Most previous researches focused on a query just only include one data 

item, but not consider multiple data items are included in a query. In this 

paper, we propose an A* algorithm to the broadcast problem which consider 

the complex queries where a query include multiple data items. Experiential 

results show that our method outperforms the QEM algorithm [14] in access 

time. 

Keywords: Data Broadcasting, Total Access Time, Complex Queries 
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Chapter 1 Introduction 

In this chapter, we describe the wireless environment of data broadcasting, 

some problems are discussed and instruction our approach. At last, we list our 

research framework.  

Advance in science and technology, internet and intranet have enabled 

the development of data-dissemination applications. The mobile computing 

and the communication technology in wireless are expanded fast in recent 

years. There are more and more people to utilize the public infrastructures to 

deliver information to other mobile users who are interested in the 

information.  

Wireless network architectures can be divided into Ad-Hoc and 

Client-Sever. An ad-hoc network forms a temporary network which consists 

of mobile devices without pre-established infrastructure [23]. In Ad-Hoc 

network, each mobile device can be a server to send information to its 

neighborhood or just be a client to receive the data items, and each mobile 

device could move free in its communication range. The power control 

problem of portable devices makes mobile users communicate only within 

their transmission ranges [28]. In [10] had proposed a broadcast tree method 

with shorting the longest edge among a spanning tree to save power 

consuming. There is a research using neighbor caching strategy to put the data 

items which it will request in its neighborhood for sharing their cache 

capability, it is an algorithm that can adjust neighbor caching ability and 

makes all caches flexible according to their idleness of storage [11]. The 

research in [10], proposed a forwarding set selection scheme to broadcast with 
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transmission power control in two-hop ad hoc network. The two-hop local 

information included node ID and node’s signal strength which was used to 

calculate the transmission power. 

The wireless communication in client-sever includes a server and many 

clients. Each mobile client could access data items which they interest in pass 

the server. The communication capacity from a server to clients (downstream) 

is far greater than clients to a server (upstream) in the wireless environment.  

For example, a server has a high bandwidth broadcast capacity if clients can 

not sent data with lower bandwidth. That means in the wireless environment, 

the mobile users are limited in bandwidth and power consuming. Because of 

this reason, the mobile users just care how long they will receive the data 

completely which they want to use and how to reduce the power consuming. 

Therefore, information systems taking broadcast-based are proposed in 

succession. Acharya et al. [1, 2, 5, 34] proposed Broadcast Disk for 

structuring the broadcast way. The client terminals take over the information 

through the broadcast system. The server analyzes the data items access 

patterns of all queries of clients and broadcasts the data items in turn.  

In wireless broadcast environment, the server will sent all data items 

repeatedly and continuously. Such the systems can be categorized into two 

ways to broadcast data items： (1) pull-based approach [ 7, 20, 31, 33, 39, 

44 ]：It considers whether clients sent data queries to the server. A server only 

broadcasts data items on demand as mobile devices ask them explicitly, so 

unwanted data items will never be broadcast (shown in Figure 1-1). (2) 

push-based approach [6, 12, 17, 18, 35, 38, 45, 47 ]：A server broadcasts data 

items repeatedly and mobile devices listen to the broadcast channel and 

receive the data items needed. The benefit of this way is the scalability. The 
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broadcast scheduling will be given an indication of data items desired by all 

clients and the cost for delivering data items is independent of queries. In 

other words, a push-based broadcast can satisfy multiple queries with the 

same data items. While the mobile devices entry the broadcast channel and 

sent their queries, they will listen to the information until they receive all data 

items which they interested in. We show the environment of wireless 

broadcast for push-based system in Figure 1-2. 

 
Figure 1- 1：The environment of wireless broadcast for pull-based system. 

 

There are two important issues when we discuss wireless data 

broadcasting which are shorten tuning time and reduce access time. The 

tuning time is the amount of time spent by a client listening to the channel 

[14]. The tuning time is determined by power consuming while mobile 

devices receive data items [13]. The access time is the amount of time elapse 
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from the moment a client submits a query to the receipt of the data items of 

his interest on the broadcast channel [14].  

 
Figure 1- 2：The environment of wireless broadcast for push-based system. 

Mobile devices will operate in two modes. One is called active mode, 

while the mobile devices connect the broadcast channel and examine the 

information from the server to decide if they should receive the data items. In 

this mode, CPU is operated for investigating the information whether match 

what they need and it will consume amount of battery power. Another mode 

means the mobile devices are worked in the doze mode to save power 

consuming as their demanded data objects arrive yet.  

For energy saving, there were researches proposed by using index 

techniques (shown in Figure 1-3) to access data objects on the broadcast 

channel [13, 23, 24, 32, 43]. Index based organization of data transmitted over 

broadcast channel, is very important form the power conservation point of 

view and can result in significant improvement in battery utilization [25]. 

They added some information in front of all data items and all clients can 
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accord to the addition information to access data objects without listening in 

the channel continuously, all mobile clients can be directed to take over the 

data items efficiently. In [22, 24, 25], the index data are broadcast m times for 

each broadcast cycle, called (1,m). Distributed indexing improves (1,m) 

indexing algorithm by decreasing some partial replication of index. Some 

researches [42, 43], introduced taxonomy of index dissemination for 

broadcast channels. They utilize B+ tree to construct search model. 

 
Figure 1- 3： The approach of index tree. 

In [36] devised an algorithm, referred to as algorithm DL, to dynamically 

adjust the broadcast programs by shuffling data items among different levels 

in the allocation tree. In [23], proposed two policies to reduce the tuning time. 

The lower power level index first policy tended to cache the leave index 

nodes of the index tree while the cut plane first policy cached the cut-plane of 

index tree. In [37], proposed a novel on-demand method, named NICD 

(Normalized Inter Cluster Distance), which eliminates the need for indexing 

the broadcast schedule by enabling mobile devices compute the require index 

information themselves. In [17], proposed an on-line algorithm to disseminate 

events update. It assumed that each channel has the fixed time slots and used 

the concept of TDM (Time Division Multiplexing) to disseminate data items. 

di di di di..... 

index item 

data items 
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Mobile devices monitored the channel with the same interval time to save 

energy consuming and avoid missing update data items. In [43], presented a 

global indexing scheme for location dependent queries, which was designed 

to serve queries in which the query result is relevant to client’s location.  

Many schemes proposed to broadcast data items efficiently to a large 

number of mobile devices. They tried to minimize the total access time for the 

data items needed. Some algorithms consider the property of real-time data 

items and non-real-time data items. In the real-time system [8, 27, 31, 33], the 

data items must be transferred to clients within the deadline. In [27] 

introduced the concept of absolute validity interval (AVI) to capture the 

temporal constraint of the data items. It was applied in many applications 

such as stock trading system, traffic system…, and so on. For example, the 

stock price changes at any time, and if the users can not receive correct price 

information, they will not handle the stocks on time. In intelligent vehicle 

highway system (IVHS) [31], sent present traffic information to drivers on 

time. If the information is not sent to the drivers on time, it will be useless 

information. 

In non-real-time system, many broadcasting schedules are studied to 

reduce the waiting time of clients for asked data items on the air. For 

transmitting data items efficiently, we must look for suitable broadcasting 

schedule of a set of data objects. Some researches were proposed in [14, 30], 

which utilize the characteristic of data frequently to decide the scheme. So the 

more popular data items must be broadcasted many times or be placed in front 

of the not popular data items in the same cycle. The schedule methods [12, 19, 

29, 45, 46], established the broadcast schedule by using caching strategy 

which put the hot data in local host. The advantage of this way is decreasing 
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the times for clients to ask their desired data items pass a server. However, it 

is limited in the cache size of capacity with each mobile user. In [18], 

proposed the method is called First Come First Served (FCFS), which ordered 

the data items by their request time. The advantage is the access request will 

get responded in a finite time. But it does not consider the difference of access 

frequency with data items. In the later, Most Request First (MRF) scheduling 

method broadcasts the data items which bases on the largest number of 

request was proposed. If most-frequent data items in a broadcast cycle, they 

will have higher response ratio. But its shortcoming is the lower-frequency 

data items will always put behind the most-frequent data items. So the request 

on those will not be satisfied in a short period. In addition, [4] combined the 

benefits of MRF and FCFS in order to provide good performance for both hot 

and cold data items. It considers the data items of access frequency and 

waiting time to calculate the proper data scheduling, declared as R×W method. 

In [40, 47], proposed a non-greedy, low polynomial time cost optimization 

method to place data over a wireless broadcast channel for multi-dimensional 

range query processing. 

 Previous works have focused on retrieving a single data item from a 

broadcast channel. But in real word, mobile devices may access multiple data 

items. Few works [15, 19, 27], had been done on complex queries where a 

query includes multiple data items. In [15], addressed the clustering of data 

items for multipoint requests, that was, a query access more than one data 

item recorded on the broadcast stream. It defined two affinity measures：data 

affinity and segment affinity. The method clustered data items based on the 

two measures. 

 Some researches [35, 38], using data mining techniques decide a 
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broadcast scheme. They based on analyzing the broadcast history (i.e., the 

chronological sequence of data items that had been requested by mobile 

devices) to find associations and sequences in individual data items. In [14], 

they construct the data scheduling by appending the data items of each query 

to minimal total access time with greedy method. It considers the frequency 

of each query to find the relationship between all data items. If the data items 

have high relationship, they will be put on together. But in this way, they just 

only account of the data items in one query, and ignore the situation of all 

data items which were accessed in whole queries. 

In this paper, our goal is to find a good broadcast scheduling that can be 

reduced clients’ access times. Our system environment is assumed as 

follows： 

 The server broadcast data items on a push-based system. 

 There is only one broadcast channel. 

 A query can be included multiple data items.  

 The size of data items is equally. 

 A data item will be disseminated once in the same broadcast cycle. 

The data placement problem can be formulated as a path search problem, 

hence we propose an A* algorithm which is a graph search algorithm to 

decide a broadcast scheduling. A* algorithm is quite famous in artificial 

intelligence domain. In the A* algorithm, we consider the requested 

relationships among data items in whole queries. We design a cost function 

and combine a heuristic Breadth-First-Search algorithm to find a good 

solution. In order to arrive at the aim in the reasonable time, we also design a 

window size to make the data items within the range are performed A* 

algorithm for searching optimal data placement in a window size. Experiential 



 9

results show that our method outperforms the QEM algorithm in access time. 

The rest of this paper is organized as follows. Chapter 2, we define the 

problem of the data broadcasting problem in the wireless environment and 

address some assumption conditions. The A* algorithm for data allocation 

with some illustrative examples is proposed in Chapter 3. Performance study 

results are discussed in Chapter 4. Final, conclusions are given in Chapter 5. 
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Chapter 2 Broadcast Scheduling Problem 

In this chapter, we define the data placement problem and introduce 

how the issue is produced. This problem was showed that it is a NP-complete 

problem [14]. We will use QD method [14] to measure the total access time of 

a query which is a mobile client needed.  

2.1 Symbol definitions 

 
Table2- 1：Symbol definitions [14] 

Notation Meaning 

id  a data item to be broadcast 

D  a set of data items id ;{ 1d , 2d  ,..., nd } 

B  the size of a broadcast stream i.e., Ddd ii ∈∀∑ ,   

iq  a query that is issued on broadcast data stream 

)( iqQDS  the set of data items that iq  accesses 

)( iqferq  the frequency of iq  

Q  the set of queries of;{ 1q , 2q ,..., Mq } 

σ  the broadcast schedule of D  

 

Table 2-1 shows some notations for problem definition [14]. A server 

will place the data items on the broadcast channel to minimize the total access 

time (TAT), denoted by [14]： 

( ) ( , ) ( ),
i

avg
i i

q Q

TAT AT q freq qσ σ
∈

= ×∑      (1) 
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where ( , )
i

a vg

i
q Q

qA T
∈

σ  is the average access time of a query iq  based on σ . 

Because clients tune into broadcast channel on different time, 

( , )
i

a vg

i
q Q

qA T
∈

σ is hard to calculate. However, a measure manner Query 

Distance (QD) is proposed to evaluate ( , )
i

a vg

i
q Q

qA T
∈

σ , that indicates the 

degree of coherence of the data items in a query [14]. The measure is 

interpreted as follows： 

Definition 1 [14]： 

Suppose ( )iQDS q  is { 1d , 2d , …, nd } and jδ  is the interval between jd  

and 1+jd  in a schedule σ . Then the QD of iq  in σ  is defined as ：  

nkMAXBqQD ki ~1    ),()( , =−= δσ   

The example in Figure 2-1, we assume >=< 5,4,3,2,1 dddddσ , the B  is 

equal to 5 and the }{)( 4,2 ddqQDS i = . Hence the 1δ  is equal to 1 and 2δ  is 

equal to 2, and 325)()( , =−=−= ki MAXBqQD δσ . 

Figure 2- 1：The QD of a query. 

In [14] proposed the lemma as follow： 

 Given a query iq  and two schedule 1σ  and 2σ  

d4 d5 d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 d1 d2 

current broadcast cycle next broadcast cycle 

1δ 2δ
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If )(AT )(AT  then  )()( 2,
avg

1,
avg

2,1, σσσσ iiii qqqQDqQD ≥≥  

 The total query distance is presented as ( )TQD σ  that is defined 

as )()( , ii qfreqqQD ∗σ , where 
i

q Q∈ . The broadcast scheduling problem 

redefine to minimize the ( )TQD σ . 

The definition was proposed in [14]： 

 Given a set of queries Q and a set of data items D, the wireless data 

placement problem is to find a broadcast schedule iσ  such that TQD( iσ ) is 

minimum among all possible ,  1,...i iσ = , 

 

2.2 Effect of different broadcast schedule 

 A broadcast scheduling of a server determines an ordering of data items 

which through the server. We use σ  as a broadcast cycle which presents a 

data ordering. In this paper, we assume that there is a server and some clients 

in the wireless environment. Server will analyze the clients’ request patterns 

to find a data schedule. The sizes of data items are equally and they will be 

broadcasted once in the same cycle. Besides, we allow each query can consist 

of more than one data items. A data item is denoted as di in this paper.  
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Figure 2- 2：The example of the Access Time. 

An ordering of data items affects the access time of all clients directly 

[14]. For example, in Figure 2-2 (a), we assume the broadcast cycle σ  = <d1, 

d2, d3, d4, d5>. There is a client (Ci) which requests the data items d3 and d5 (qi

＝{d3, d5}). Ci listens to the broadcast channel when the server broadcasts d3 

in part. In order to access d3 completely, it will wait for next broadcast cycle, 

but d5 will be received in current broadcast cycle. In other words, the client 

must wait for d3 until next broadcast cycle to access d3 and d5 completely. We 

present the AT (qi) as the time from a client tunes in a broadcast channel until 

it receives all data items which are the client wanted. So while the broadcast 

cycle σ = <d1, d2, d3, d4, d5>, the AT (qi) is equal to 5.5 (Figure 2-2(a)). But if 

the broadcast cycle is changed as 'σ = <d4, d1, d2, d3, d5>, the AT (qi) will be 

2.5 (Figure 2-2(b)). 

 
 

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 

current broadcast cycle next broadcast cycle 

start to read d3 and d5 receive d3 and d5 completely 

access time = 5.5 

(a) 

d4 d1 d2 d3 d5 d4 d1 d2 d3 d5 

current broadcast cyclenext broadcast cycle 

start to read d3 and d5 receive d3 and d5 completely 

access time = 2.5 

(b) 



 14

 
Figure 2- 3：The different broadcast scheduling has different access time. 

However, in real world, there are many clients to request different queries. If 

we change the broadcast cycle, it maybe increases the access time of some 

clients. For example, we assume two clients sent their queries, q1 = {d1, d2} 

and q2 = {d2, d3}. If σ  = <d1, d2, d3, d4, d5>, the 
1

( ) 2AT q =  and 
2

( ) 3AT q =  

(shown in Figure 2-3(a)). If 'σ  = <d2, d3, d5, d1, d4>, then 
1

( )AT q  will be 

increase from 2 to 4, and 
2

( )AT q  will be decrease from 3 to 2 (shown in 

Figure 2-3(b)). In this case, we know the benefit among queries is a complex 

and hard work, and all data items have different frequency with accessing 

times. Our purpose is to decide a data schedule to make the Total Access Time 

as smaller as possible. 

 

 

 

 

 

 

 

 

d1     d2     d3    d4      d5 
 

q2＝{d2, d3﹜ 

 

d2    d3     d5    d1      d4 
 

q2＝{d2, d3}

q1＝{d1, d2} q1＝{d1, d2} AT(q1) = 2 

AT(q2) = 3 AT(q2) = 2 

AT(q1) = 4 

(a) (b) 
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Chapter 3 A* search algorithm Approach to 

Wireless Data Placement 

3.1 Basic idea 

A* algorithm [16, 41] is a graph search algorithm that finds a path from a 

given initial node to a given goal node. It utilizes a "heuristic estimate" that 

orders each node by estimating the best route that goes through that node. It 

visits the nodes in order of this heuristic estimate. The A* algorithm is 

therefore an example of best-first search. The Best-First-Search (BFS) 

algorithm [41] uses heuristic function to estimate how far from the goal. 

Instead of choosing the node closest to the start point, it selects the node 

closest to the goal node. Because of using a heuristic function guides the way 

towards the goal node very quickly. 

 
Figure 3- 1：A state space graph. 

 

Let we consider the follow example. If we are standing at place X, and 

we want to go to place Y. The X place is a node of the graph and a road is an 

start 

3dN
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3 

4 
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2

2

2

2
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edge. The data placement problem can be formulated as a path search 

problem in an acyclic directed graph, called state space graph (shown in 

Figure 3-1). If we do a breadth-first search which is like Dijkstra's Algorithm 

[41], we will search all nodes within a state space graph, gradually expanding 

paths to search places farther and farther away from our starting node. 

However, a better strategy is to explore the node directly to the goal node first. 

Then, the roads permitting, we will continue to explore intersections closer 

and closer to the goal. 

 

3.2 Description 

A* algorithm begins at a selected node. Applied to this node is the "cost" 

of entering this node (usually zero for the initial node). A* algorithm then 

estimates the cost to the goal node from the current node. The heuristic cost is 

assigned to the path leading to this node. Then, the node is added to a priority 

queue, usually denoted as "open". The algorithm after removes the next node 

from the priority queue. If the queue is empty, there is no path from the initial 

node to the goal node and the algorithm can be stopped. If the node is the goal 

node, A* algorithm will output the successful path.  

If the node is not the goal node, new nodes are created for other 

admissible adjoining nodes. For any successive node, A* algorithm calculates 

the "cost" of entering the node and saves it with the node. This cost is 

calculated from the cumulative sum of costs which are stored with their 

ancestors, plus the cost of the process which reached this new node. 

The algorithm maintains a "closed" list of nodes which have been 

checked. If a generated node newly has been located in this list with an equal 
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or lower cost, no further processing is done on that node. If a node in the 

closed list mates a new node, but had been stored with a higher cost, it is 

removed from the closed list, and processing continues on the new node. Next, 

an estimate of the new node's cost to the goal is increased to the cost with 

forming the heuristic for that node. Then it is added to the "open" priority 

queue, unless an identical node with lesser or equal heuristic is found there. 

As soon as the above steps have been repeated for each new adjoining 

node, the original node taken from the priority queue is added to the "closed" 

list. The next node is then popped from the priority queue and the process is 

repeated. The A* algorithm procedure is a branch and bound search algorithm, 

with an estimate of remaining path, which is combined with the dynamical 

programming principle. It is also an important work to design a proper cost 

function in a heuristic search algorithm. An estimate of the new node's cost 

directly affects the final solution. If the estimate of remaining path forever is a 

lower-bound on the actual path, it is the optimal solution. We will describe 

our cost function in 3.2.2. To conduct A* algorithm search below [16]： 

 From a one-element queue consisting of a zero-length path that 

contains only the root node. 

 Until the first path in the queue terminates at the goal node or the 

queue is empty, 

 Remove the first path from the queue; create new paths by 

extending the first path to all the neighbor of the terminal node. 

 Reject all new paths with loops. 

 If two or more paths reach a common node, delete all those paths 

except the one that reaches the common node with the minimum 

cost. 
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 Sort the entire queue by the sum of the path length and a 

lower-bound estimate of the cost remaining, with least-cost paths 

in front. 

 If the goal node is found, announce success; otherwise, announce 

failure.  

 

3.2 Using A* algorithm for data broadcast 

Using A* to decide a path with minimum costs in a state space graph is 

effective [5, 9]. It is a branch and bound algorithm that starts at a vertex and 

branches at the vertex i with the lowest cost that has been visited up now. 

Note that only the visited nodes are created dynamically. 

A correct estimate will cause only expansions on the optimum path. 

Moreover the search is accelerated by the use of a monotonically increasing 

cost function, because not any vertex will be expanded twice. Next, we 

introduce our cost function. 

 

3.2.1 Cost function 

There are different results with different cost functions, so how to 

estimate the cost of each node is an important work. In this session, we 

illustrate our cost function with a simple example. 

Assume there is a set of data items to be placed, denoted as D= {d1, 

d2,…,dn}. A query kq  accesses a set of data items is represented as ( )
k

QDS q . 

We introduce the relationship of data items for the queries kq  in Figure 3-2.  
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Figure 3- 2：The relationships of data items with different queries. 

A vertex is denoted as iV  included a set of data items that has been placed 

(shown in Figure 3-3). The 'iV s  parent node is )( iVP . A cost of the vertex 

iV  is denoted as ( )iC V  and ))(( iVPC  is the cost of its parent node. The 

( )iM V D⊂  means a set of data items which has been placed and 

( )iM V D⊂  is a set of data items which not have been placed. The ˆ ( )iC V  is 

the number of queries that links ( )iM V  and ( )iM V . If there are n queries 

between the two set, ˆ ( )iC V  is equal to n. The number within a vertex in 

Figure 3-3 is ˆ ( )iC V . We illustrate how to order the data items with a simple 

case. 

q5 

q4 

q3 

q2 

q1 

d1 d2 d3 d4 

● ● ● ● 

● 

● ● 

● ● 

● ● 
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Figure 3- 3：State space graph for the example in Figure 3-2. Sub graph 
searched during Brand and Bound (solid), and optimal path (bold). 

For example, if there are five queries 1( )QDS q ＝{d1, d2}、 2( )QDS q ＝

{d2, d3}、 3( )QDS q ＝{d2, d3, d4}、 4( )QDS q ＝{d3, d4}、 5( )QDS q ＝{d1, d4}, 

the data items’ relationships are shown in Figure 3-3. The cost of vertex V1、

V2、V3、V4 are equal to 2、3、3、3, denoted as 2)(ˆ
1 =VC 、 3)(ˆ

2 =VC 、

3)(ˆ
3 =VC 、 3)(ˆ

4 =VC , the computational processes are presented in Figure 

3-4. In other words, if exists two data items, id and
jd belonged to ( )kQDS q , 

and ( )i id M V∈ 、 ( )j id M V∈ , then we add 1 to )(ˆ
iVC . Thus the cost function in 

our research is presented as follows： 

)(ˆ))(()( iii VCVPCVC +=                        (2) 

3 

5

3

 

 

 

 

3 
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V16{d1, d2, d3 , d4} Initial 
state
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V8{d1, d2, d3 }
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d1 d2 
d3 
d4 

)( iVM  )( iVM

q1 

q5 

(a) 1
ˆ ( ) 2C V =   

d2 d1 
d3 
d4 

)( iVM )( iVM  
q1 

q3 

q2 

(b) 2
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d3 d1 
d2 
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q3 

(c) 
3
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d4 d1 
d2 
d3 
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q5 

q4 

(d) 4
ˆ ( ) 3C V =   

Figure 3- 4：The calculation of a node of ˆ'  ( )i iV s C V . 

Our goal is to find a data schedule that let ( )TAT σ  is smaller as possible. 

According to the cost function, we calculate the vertex as follows to find an 

optimum solution. Figure 3-3 is a state space graph for the example in Figure 

3-2. The calculation of a node of '  ( )i iV s C V  are explained as follows： 

1

ˆ ( ) 2C V = 、
1 0

( ( )) 0 ( )C P V C V= =  so  
1 1 1

ˆ( ) ( ( )) ( ) 0 2 2C V C P V C V= + = + =  

2

ˆ ( ) 3C V = 、
2 0

( ( )) 0 ( )C P V C V= =  so  
2 2 2

ˆ( ) ( ( )) ( ) 0 3 3C V C P V C V= + = + =  

3

ˆ ( ) 3C V = 、
3 0

( ( )) 0 ( )C P V C V= =  so  
3 3 3

ˆ( ) ( ( )) ( ) 0 3 3C V C P V C V= + = + =  

4

ˆ ( ) 3C V = 、
4 0

( ( )) 0 ( )C P V C V= =  so  
4 4 4

ˆ( ) ( ( )) ( ) 0 3 3C V C P V C V= + = + =  
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(c) 7
ˆ ( ) 3C V =   

d1→
d2 
 

d3 
d4 

)( iVM  )( iVM
q2 

q5 

q3 

(a) 5
ˆ ( ) 3C V =   

(b) 
6

ˆ ( ) 5C V =   

d1→
d4 
 

d2 
d3 

)( iVM )( iVM  
q1

q4

q3 

d1→
d3 
 

d2 
d4 

)( iVM )( iVM

q2 

q4 
q3 

q1 

q5 

 

Figure 3- 5：The calculation of a node of ˆ'  ( )i iV s C V . 

We choice the minimum cost of node ( 1( )C V ) to expand. Now, d1 

presents the data item that has been located ( 11 )( dVM = ), and the set of data 

items, d2, d3, d4, presents those not have been located ( 4,3,21 )( dddVM = ).A* 

algorithm forever choices the minimum cost of 
i

V to expand. We calculate the 

cost of data sequence of d1  d2 ( 5( )C V )、d1  d3 ( 6( )C V ) and d1  d4 

( 7( )C V ),the result is presented in Figure 3-5, then it expands 5V  (Figure 3-6) 

and 8V  (Figure 3-7). In the instance, the optimal path is d1  d2  d3  d4, 

and the cost is equal to 8. 
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Figure 3- 6：Expand V5 to calculate the ˆ'  ( )i iV s C V . 
 

 

Figure 3- 7：Expand V8 to calculate the ˆ'  ( )i iV s C V . 

 

3.2.2 Our algorithm  
Algorithm：A* Algorithm ( 'σ ). 

Input： 'σ - the ordering of data items in the window. 

Output：An optimal data schedule( ''σ ). 

1. initial root r;  

2.Q φ← ; /* Q=Queue. 

3. ( )
rdM N ={φ }; ( ) 0

rdC N = ; 

4. add 
rdN into Q; 

 

14
ˆ ( ) 0C V =   

d1  
d2  
d3  
d4 

)( iVM  )( iVM  

d4 
q3 

q4 
d3 

(a) 8
ˆ ( ) 2C V =   (b) 9

ˆ ( ) 2C V =   

d1  
d2  
d3 

d1  
d2  
d4 

q3 

q4 

)( iVM)( iVM )( iVM
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5. delete 
idN  from Queue  with Min ( )

idC N ; 

6. for each jd  in 'σ   

7.   if ( jd ∉ ( )
idM N ) then 

8.     new node 
jdN ; 

9.       if 
jdN exist data items belonged to ( )

k
QDS q ) 

10.        if some data items∈ ( )
jdM N and some data items∈ ( )

jdM N  then 

11.            ˆ ˆ( ) ( ) 1;
j jd dC N C N= +  

12.            ( ) ( )
j id d jM N M N d= + ; 

13.            ˆ( ) ( ( )) ( )
j j jd d dC N C P N C N= + ; 

14.      T=true; 

15.      for each 
idN  in Q ; 

16.         if ( ( ) ( )
i jd dM N M N⊇  and ( ) ( )

i jd dC N C N≤ ) then 

17.             T=false; 

18.             abort the for loop; 

19.         if ( ( ) ( )
i jd dM N M N⊆  and ( ) ( )

i jd dC N C N≥ ) then 

20.             delete 
idN  from Q ; 

21.  if (T) then  

22.    add 
jdN  into Q;   

First, we initial the root r (
rdN ), and let the queue, denoted as Q, is empty. 

The root node is not placed any data item yet, that is ( )
rdM N =φ , and its cost 

is equal to 0, presented as ( ) 0
rdC N = . And then

rdN is added into the Q. 

Line 5, removes the node
idN with minimal cost from the Q. Lines 6 to 13 
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explain how to create nodes according to ( )
idM N . Lines 9 to 13 calculate the 

cost of a new 
jdN (the blow-by-blow step is shown in section 3.2.2), and we 

copy the parent node 'id s ( )
idM N into ( )

jdM N  and then append jd into ( )
jdM N .  

Lines 15 to 20 adjudge whether have
idN must be deleted from the Q 

or
jdN has not added into the Q. Lines 16 to 18 show if ( ) ( )

i jd dM N M N⊇ and 

the cost of 
idN is less than the cost of 

jdN ( ( ) ( )
i jd dC N C N≤ ). Then we will 

reject
jdN into the Q. For example, we assume a node

idN in the Q and 

its 1, 2, 3( ) { }
idM N d d d= and its cost is 5. The new node

jdN and 

its 3, 2( ) { }
jdM N d d= and its cost is 8. We will reject

jdN into the Q. Lines 19 to 

20 explain how to delete the nodes that can not find optimal solution. 

If ( ) ( )
i jd dM N M N⊆ and its cost is greater than the cost of 

jdN ( ( ) ( )
i jd dC N C N≥ ). We will delete

idN from the Q and then add
jdN into the Q. 

For example, if a node
idN is in the Q, and its 1, 3, 2( ) { }

idM N d d d= and its cost 

is 9. The new node
jdN has 1, 2, 3( ) { }

jdM N d d d= ) and its cost is 5. We will 

delete
idN from the Q and then add

jdN into the Q. 

 

3.2.3 Set a range to implement A* algorithm 

When a server collects clients’ query patterns, it will produce a broadcast 

schedule (shown in Figure 3-8). As description in section 3.1, A* algorithm 

uses the branch and bound method to reach its work. So we can predict that if 

the number of data items becomes greater, it also expends more time to 

estimate all possible paths in a state space. For this reason, we set a search 
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range called window size, denoted as W (shown in Figure 3-8), and let the data 

items in the scope are implemented A* algorithm until the window size 

includes the last node. Notice that in order to cover data items in front W, the  

  
Figure 3- 8：Set a window size. 

shift scope, denoted as l is between 1 to W. Therefore A* algorithm gets a 

broadcast schedule in a reasonable time. In order to move data items in a 

proper position, we reset continuously the start point of the window denoted 

as offset, p. we determine the p value between 0 to W in a random way. On the 

left of p is the first group to perform A* and the other data items are enforced 

A* which are according to the window size. We summarize our method as 

follows： 

1. Input：W, l ;  /* W is the range which includes data items to run A*.              

2.             /* l is the window shift scope.  

3. initial a data schedule; 

4.   repeat 

5.  random choose a number p;   /* 0 <= p <W. 

6.   set the first window covers the first p data items and use A* algorithm  

7.      to schedule the data items; 

d2

p = 3 

W = 4 

d3 d4 d5 d6 d7 d8 dn 

 l = W / 2 

d9 d10 d11d1 
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8.  repeat  

9.      shift right the window by l ;    /* 0 <= l <W. 

10.      call A* ( ')σ algorithm to schedule the data items in the window;  

11.             /* 'σ is the ordering of data items in the window.  

12.  until the window includes the last data item; 

13.  until the cost converge; 
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Chapter 4 Performance Evaluation 

 In this chapter, we evaluate the performance of the A* algorithm and 

compare our method with the QEM algorithm [14]. We implement the 

algorithm A* and QEM using Java language. The performance metric is 

considered in experiments with the total access time of all queries. (Please see 

Chapter 2). We run these programs on a PC with P4 2.0 GHz micro-processor, 

256MB RAM and 30GB hard disk. In our experiments, the selectivity is 

denoted as S. Each query can include S data items of N (the number of data 

items) at most. For example, if N = 100 and S = 2%, each query can access 

100*2% data items at most. The query patterns’ access frequencies are with 

two distributions：(1) Normal distribution (2) Uniform distribution. 

 In our algorithm, we just calculate all possible paths which can find the 

optimal solution. The cost function is described in Section 3.2.2.  

4.1 Efficiency of the Various Window Sizes and Iterations 

In Figure 4-1, we use 100 query patterns and S is equal to 2%. The 

query patterns’ access frequencies are uniform distribution. When N are 

equal to 300、400、500、700、900、1000. We observe the variation of window 

sizes and iterations in the total access time.  

As shown in the result, while W = 10 or W = 8, the total access time 

will be converged in 200 iterations approximately. But while W = 4 or W = 6, 

the total access time is converged with more iterations. In other words, if the 

number of data items becomes greater and window size is smaller, the A* 
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algorithm needs more iterations to find a good broadcast schedule. 

Figure 4- 1：Total Access Time of various numbers of data items with 

different window sizes and iterations. The query patterns’ access frequencies 

are uniform distribution. 

4.2 Efficiency of the Number of Data Items 

We assume that there are 100 query patterns and the selectivity is 2%. We 

set the W = 4 and l = W/2. The query patterns’ access frequencies are with a 

normal distribution. We observe the variation of total access time by changing 

the total number of data items (N). The results are shown in Figure 4-2. 
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Normal Distribution
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Figure 4- 2：Efficiency of the number of data items with normal distribution. 

The improvement ratio with different data items are presented in Table 

4-1. The results of A* are superior to QEM in access time. On average, our 

approach yields improvement of 47.29% over QEM. 

Table 4- 1：Improvement ratio with different data items with normal 
distribution 

 
Normal Distribution 

# of data 
items QEM A* Improve (%) 

100 2192 1052 108.365019 
200 4462 4119 8.327263899 
300 5198 5134 1.246591352 
400 9740 4666 108.7441063 
500 10397 9468 9.81199831 

Average 47.29899577 
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We set the W = 4 and l = W/2. The query patterns’ access frequencies are 

with a uniform distribution. There are 100 query patterns and the S is 2%. We 

observe the total access time variation with the numbers of data items from 

100 to 500. The results are shown in Figure 4-3. A* still outperforms QEM 

approach.  
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Figure 4- 3：Efficiency of the number of data items with uniform distribution. 

The improvement ratio about the change of data items are shown in 

Table 4-2. The results of A* are better than QEM in access time. On average, 

our approach yields improvement of 137.17% over QEM. 
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Table 4- 2：Improvement ratio with different data items with uniform 
distribution 

 
Uniform Distribution 

# of data 
items 

QEM A* Improve (%) 

100 11820 1830 545.9016 
200 27800 11760 136.3946 
300 42200 42080 0.285171 
400 67230 65450 2.719633 
500 72820 72420 0.552334 

Average 137.1707 

 

4.3 Efficiency of the Number of Query Patterns 
Figure 4-4 is shown the results with various numbers of query patterns. 

The numbers of query patterns are among 100 to 900. We set the W = 4 and l 

= W/2. The query patterns’ access frequencies are with a normal distribution. 

The number of data items is 100, and the S is 2%. A* outperforms QEM 

approach. 
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Figure 4- 4：Efficiency of the number of query patterns with normal 

distribution. 



 33

The improvement ratio about the change of data items are shown in 

Table 4-3. The results of A* are better than QEM in access time. On average, 

our approach yields improvement of 21.67% over QEM. 

Table 4- 3：Improvement ratio with different number of query patterns with 
normal distribution. 

 
 

Normal Distribution 
# of queries QEM A* Improve (%) 

100 2192 1021 114.6915 
200 2966 2798 6.004289 
300 4642 4503 3.086831 
400 5989 4256 40.71898 
500 6418 6110 5.040917 
600 8512 7769 9.56365 
700 10041 9154 9.689753 
800 11571 11381 1.669449 
900 14366 13734 4.601718 

Average 21.67412 

 

 Figure 4-5 is shown the results with various numbers of query patterns. 

The numbers of query patterns are among 100 to 900. We set the W = 4 and l 

= W/2. The query patterns’ access frequencies are with a uniform distribution. 

The number of data items is 100, and the S is 2%. Our proposed approach 

gives better performance than QEM algorithm. 
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Uniform Distribution
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Figure 4- 5：Efficiency of the number of query patterns with uniform 

distribution. 

The improvement ratio with different data items are presented in Table 

4-4. The results of A* are superior to QEM in access time. On average, our 

approach yields improvement of 103.19% over QEM. 

Table 4- 4：Improvement ratio with different number of query patterns with 
uniform distribution 

 
Uniform Distribution 

# of queries QEM A* Improve (%) 

100 11820 1790 560.3352 
200 21870 13020 67.97235 
300 34220 20140 69.91063 
400 45510 33960 34.0106 
500 55010 40080 37.2505 
600 73990 52960 39.70921 
700 85360 52360 63.02521 
800 96800 75850 27.6203 
900 109590 85030 28.88392 

Average 103.1909 
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4.4 Efficiency of Selectivity Parameter S 

 In this section, we observe the variation of selectivity in the total access 

time. The results are shown in Figure 4-6.We set the W = 4 and l = W/2. The 

query patterns’ access frequencies are with a uniform distribution. We use 100 

data items and 500 query patterns in this experiment. The performance of A* 

is better than QEM. As a query accesses more data items, our approach still 

can get a good solution. Particularly, the selectivity is smaller than 3%. 
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Figure 4- 6：Efficiency of different selectivity. 

The improvement ratio with different data items are presented in Table 

4-5. The results of A* are superior to QEM in access time. On average, our 

approach yields improvement of 15.95% over QEM. 
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Table 4- 5：Improvement ratio with different selectivity with uniform 

distribution 
 

Uniform Distribution 
Selectivity QEM A* Improve (%) 

2 55010 39670 38.66901941 
3 100400 85470 17.46811747 
4 131290 118820 10.49486618 
5 153570 139380 10.18080069 
6 180210 158240 13.88397371 
7 191210 169470 12.82822919 
8 203810 185640 9.787761258 
9 226040 197750 14.30594185 

Average 15.95233872 
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Chapter 5 Conclusion 

In this paper, we have proposed an A* method for the data broadcast 

problem which mobile clients’ access more than one data items. A* uses the 

branch and bound method to reach its work. We also set a search range and let 

the data items in the scope are implemented A* in a reasonable time. We 

compare our method with QEM [14]. The proposed A* strategy is shown to 

generally outperform QEM.  

In the future we will expend this work on multi channels environment 

and data items with non-uniform lengths.  
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