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Abstract

In this study, we investigate the periodic review inventory models with a mixture of backorders and lost
sales by controlling lead time and setup cost simultaneously to reduce the inventory operating cost. It is
assumed that the probability distribution of the protection interval, i.e., review period plus lead time, demand
is unknown but its 5rst two moments are given, we apply the minimax distribution free procedure to solve this
problem. An algorithm to 5nd the optimal solutions is developed. Speci5cally, from the results of numerical
examples, it can be shown that, the signi5cant savings can be achieved through the reductions of lead time
and setup cost.

Scope and purpose

In most of the literature dealing with periodic review inventory problems, both lead time and setup cost are
treated as constants. Recently, Ouyang and Chuang (J. Inf. Manage. Sci. 9 (1998) 25) presented a minimax
distribution free procedure for the periodic review inventory model which involves a controllable lead time.
We note that the paper is focusing on the bene5ts from lead time reduction in which setup cost is viewed as a
5xed constant. From the Japanese experience of Just-In-Time (JIT) production, it has been observed in many
manufacturing settings including job shops, batch shops and ;ow shops, whose setup cost can be reduced
by investing capital. For this reason, we attempt to extend Ouyang and Chuang’s model by formulating a
modi5ed periodic review model to accommodate more practical features of the real inventory systems.
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1. Introduction

In traditional economic order quantity (EOQ) and economic production quantity (EPQ) models,
setup cost is treaded as a constant. However, in practice, setup cost can be controlled and reduced
through various eForts such as worker training, procedural changes and specialized equipment ac-
quisition. Through the Japanese experience of using Just-In-Time (JIT) production, the advantages
and bene5ts associated with eForts to reduce the setup cost can be clearly perceived. The ultimate
goal of JIT from an inventory standpoint is to produce small lot sizes with good quality products. In
order to achieve this goal, investing capital in reducing setup cost is regard as one of the eFective
ways. Moreover, accompanying the smaller lot sizes from lower setup cost, bene5ts such as greater
;exibility in scheduling, lower storage space and lower investment in inventory can be obtained.

According to Silver et al. [1], the implementation of electronic data interchange (EDI) may reduce
the 5xed setup cost and result in new replenishment policy and the corresponding lower cost. In
1990, Nasri et al. [2] studied JIT manufacturing system, and pointed out that the impact of investing
in reduced setup cost has been observed in many manufacturing settings including job shops, batch
shops and ;ow shops. This type of investment diFers from the traditional approach of investment
aimed at increasing capacity because, in most production systems, production scheduling is aFected
directly by setup cost. In addition, setup cost control has been a topic of interest for many researchers
in the 5eld of production/inventory management. Initially, Porteus [3] introduced the concept and
developed a framework of investing in reducing setup cost on the classical EOQ model. Porteus
[4] extended [3] to consider the discounted eFects on the EOQ model with setup cost reduction.
Billington [5] considered the EPQ model without backorders and included the setup cost as a function
of capital expenditure. Nasri et al. [2] investigated the eFects of setup cost reduction on the EOQ
model with stochastic lead time. Kim et al. [6] presented several classes of setup cost reduction
functions and described a general solution procedure on the EPQ model. Paknejad et al. [7] presented
a quality-adjusted lot-sizing model with stochastic demand and constant lead time, and studied the
bene5ts of lower setup cost in the model. Sarker and Coates [8] extended EPQ model with setup
cost reduction under stochastic lead time and 5nite number of investment possibilities to reduce
setup cost.

The underlying assumption in above models is that the lead time is prescribed constant or a
random variable, which therefore, is not subject to control (see, e.g. Montgomery et al. [9], Naddor
[10] and Silver and Peterson [11]). In fact, as pointed out by Tersine [12], lead time usually consists
of the following components: order preparation, order transit, supplier lead time, delivery time, and
setup time. In many practical situations, lead time can be reduced at an added crashing cost; in
other words, it is controllable. By shortening lead time, we can lower the safety stock, reduce the
stockout loss, shave product costs and improve the customer service level so as to gain competitive
edges in business.

The goal of JIT inventory philosophies is the focus that keeps the inventory level and lead time to a
practical minimum. In 1983, Monden [13] studied Toyota production system, and clearly addressed
that lead time reduction is a crux of elevating productivity. Recently, several continuous review
inventory models have been developed to consider lead time as a decision variable (see, e.g. Liao and
Shyu [14], Ben-Daya and Raouf [15], Ouyang et al. [16], Ouyang and Wu [17], Moon and Choi [18]
and Ouyang and Chuang [19]). But in the periodic review inventory model, literature discussing lead
time reduction is few. In a recent paper, Ouyang and Chuang [20] presented a minimax distribution
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free procedure for the periodic review inventory model which involves a controllable lead time. We
note that the paper is focusing on the bene5ts from lead time reduction in which setup cost is treated
as a 5xed constant.

Though both the lead time and setup cost have been recognized as cruxes of elevating productivity,
there has been little literature simultaneously examining the eFects of these two factors on the
inventory-control system. And hence, here we would like to investigate such an issue and extend
the recent study presented by Ouyang and Chuang [20], who applied the minimax distribution
free procedure to deal with the lead time reduction for the periodic review inventory models with
stochastic partial backorders. That is, in this paper, instead of the 5xed setup cost assumption in
[20], we consider setup cost as one of the decision variables, which can be varied through capital
investment. We seek to minimize the sum of capital investment cost of reducing setup cost and
inventory related cost by simultaneously optimizing review period (T ), setup cost (A) and lead
time (L) for the periodic review model. From the numerical examples provided, we can show that
the savings of total expected annual cost can be achieved by the eForts of investing in reducing
setup cost. In our study, we do not require the probability distribution of the protection interval,
i.e., review period plus lead time, demand to be known, however, its 5rst and second moments are
needed to be given. The purpose of this paper is to solve such a periodic review inventory model by
using the minimax distribution free approach. To achieve the purpose, we develop an algorithm to
5nd the optimal review period, optimal setup cost and optimal lead time. Moreover, two illustrative
numerical examples are given in this study.

2. Notations and assumptions

To develop the proposed models, we adopt the following notations and assumptions used in
Ouyang and Chuang [20] in this paper.

Notations

D average demand per year
h inventory holding cost per item per year
� the fraction of the demand during the stockout period that will be backordered, 06�61
� standard deviation of the demand per unit time
� stockout cost per unit short
T length of a review period
A setup cost/setup
L length of lead time
X the protection interval, T + L, demand which has a probability density function (p:d:f :)

fX with 5nite mean D(T + L) and standard deviation �
√
T + L

x+ maximum value of x and 0, i.e., x+ =Max{x; 0}.

Assumptions

1. The inventory level is reviewed every T units of time. A suNcient quantity is ordered up to the
target level R, and the ordering quantity is arrived after L units of time.
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2. The length of the lead time L does not exceed an inventory cycle time T so that there is never
more than a single order outstanding in any cycle.

3. The target level R is the expected demand during the protection interval + safety stock (SS), and
SS is the k× (standard deviation of protection interval demand), i.e., R=D(T + L)+ k�

√
T + L,

where k is the safety factor and satis5es P(X ¿R) = q; q represents the allowable stockout
probability during the protection interval and is given.

4. The lead time L consists of n mutually independent components. The ith component has a min-
imum duration ai and normal duration bi, and a crashing cost per unit time ci. Further, for
convenience, we rearrange ci such that c16 c26 · · ·6 cn. Then, it is clear that the reduction of
lead time should be 5rst on component 1 because it has the minimum unit crashing cost, and
then component 2, and so on.

5. If we let L0 =
∑n

j=1 bj and Li be the length of lead time with components 1; 2; : : : ; i crashed to
their minimum duration, then Li can be expressed as Li =

∑n
j=1 bj −

∑i
j=1 (bj −aj); i=1; 2; : : : ; n

and the lead time crashing cost C(L) per cycle for a given L∈ [Li; Li−1] is given by C(L) =
ci(Li−1 − L) +

∑i−1
j=1 cj(bj − aj).

3. Model formulation

Ouyang and Chuang [20] considered an inventory system for a periodic review model with con-
trollable lead time, and asserted the following function of total expected annual cost which is the
sum of setup cost, holding cost, stockout cost, and lead time crashing cost. Symbolically, it needs
to minimize

EAC(T; L) =
A
T

+ h
[
R− DL− DT

2
+ (1− �)E(X − R)+

]

+
�E(X − R)+

T
+

C(L)
T

; (1)

where E(X − R)+: the expected demand shortage at the end of cycle.
In contrast to Ouyang and Chuang’s [20] model, we consider the setup cost A as a decision

variable and seek to minimize the sum of the capital investment cost of reducing setup cost A and
the inventory related costs (as expressed in problem (1)) by optimizing over T; A and L constrained
on 0¡A6A0, where A0 is the original setup cost. That is, the objective of our problem is to
minimize the following total expected annual cost

EAC(T; A; L) = �M (A) + EAC(T; L); (2)

over A∈ (0; A0], where � is the fractional opportunity cost of capital per year, M (A) follows a
logarithmic investment function given by

M (A) =
1
�
ln
(
A0

A

)
for A∈ (0; A0]; (3)

where � is the percentage decrease in A per dollar increase in investment. This logarithmic investment
function has been utilized by Nasri et al. [2], Porteus [3,4] and others [6–8].
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From function (3), we note that the setup cost level A∈ (0; A0]. It implies that if the optimal setup
cost obtained does not satisfy the restriction on A, then no setup cost reduction investment is made.
For this special case, the optimal setup cost is the original setup cost.

Substitute (3) and (1) into (2) and minimize the resulting equation; we suNce to minimize

EAC(T; A; L) =
�
�
ln
(
A0

A

)
+

A
T

+ h
[
R− DL− DT

2
+ (1− �)E(X − R)+

]

+
�E(X − R)+

T
+

C(L)
T

; (4)

over A∈ (0; A0].
On the other hand, since the probability distribution of the protection interval demand X is un-

known, we cannot 5nd the exact value of E(X − R)+. Hence, we propose to apply the minimax
distribution free procedure for our problem. Let F denote the class of p:d:f .s with 5nite mean
D(T + L) and standard deviation �

√
T + L, then the minimax principle for this problem is to 5nd

the “most unfavorable” p:d:f : fX in F for each (T; A; L) and then minimize over (T; A; L); more
exactly, our problem is to solve

Min
T;A;L

Max
fX∈F;

EAC(T; A; L); (5)

over A∈ (0; A0].
For this purpose, we need the following proposition.

Proposition 1. For any fX ∈F,

E(X − R)+6
1
2

{√
�2(T + L) + [R− D(T + L)]2 − [R− D(T + L)]

}
: (6)

Moreover, the upper bound (6) is tight.

Proof. The proof is similar to that of Lemma 1 given by Gallego and Moon [21], and hence, we
omit it.

Given that R=D(T+L)+k�
√
T + L, and for any probability distribution of the protection interval

demand X , the above inequality always holds. Then, using model (4) and inequality (6), model (5)
is reduced to minimize

EAC(T; A; L) =
�
�
ln
(
A0

A

)
+

A+ C(L)
T

+ h
[
DT
2

+ k�
√
T + L+

1
2
(1− �)�

√
T + L(

√
1 + k2 − k)

]

+
��

√
T + L
2T

(
√
1 + k2 − k); (7)

over A∈ (0; A0].
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In order to solve this nonlinear programming problem, we 5rst ignore the restriction A∈ (0; A0] and
take the 5rst partial derivatives of EAC(T; A; L) with respect to T; A and L∈ [Li; Li−1], respectively.

@EAC(T; A; L)
@T

=−A+ C(L)
T 2 +

hD
2

+
h�
2
(T + L)−1=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

+
��
4T

(T + L)−1=2(
√

1 + k2 − k)− ��
√
T + L

2T 2 (
√

1 + k2 − k); (8)

@EAC(T; A; L)
@A

=− �
�A

+
1
T

(9)

and

@EAC(T; A; L)
@L

=
1
2
h�(T + L)−1=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

+
��
4T

(T + L)−1=2(
√

1 + k2 − k)− ci
T
: (10)

By examining the second-order suNcient conditions, it can be easily veri5ed that EAC(T; A; L)
is not a convex function of (T; A; L). However, for 5xed T and A, EAC(T; A; L) is concave in
L∈ [Li; Li−1], because

@2EAC(T; A; L)
@L2 =−1

4
h�(T + L)−3=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

−��
8T

(T + L)−3=2(
√

1 + k2 − k)¡ 0:

Therefore, for 5xed T and A, the minimum total expected annual cost will occur at the end
points of the interval [Li; Li−1]. On the other hand, it can be shown that, for a given value of
L∈ [Li; Li−1], EAC(T; A; L) is a convex function of (T; A) (see Appendix A for the proof). Thus, for
5xed L∈ [Li; Li−1], the minimum value of EAC(T; A; L) will occur at the point (T; A) which satis5es
@EAC(T; A; L)=@T = 0 and @EAC(T; A; L)=@A= 0.

Solving above equations for T and A, respectively, produces

A+ C(L)
T 2 =

hD
2

+
h�
2
(T + L)−1=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

−��(T + 2L)
4T 2 (T + L)−1=2(

√
1 + k2 − k) (11)

and

A=
T�
�

: (12)

Substituting (12) into (11) leads to

T�=�+ C(L)
T 2 =

hD
2

+
h�
2
(T + L)−1=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

−��(T + 2L)
4T 2 (T + L)−1=2(

√
1 + k2 − k): (13)
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Theoretically, for given �; �; h; D; �; �; �; k (which depends on the allowable stockout probability
q and the p:d:f : fX (x) of the protection interval demand X ), and each Li (i = 0; 1; 2; : : : ; n), from
Eqs. (12) and (13), we can solve for (Ti; Ai; Li); and then using model (7), we can obtain the
corresponding total expected annual cost EAC(Ti; Ai; Li) for i = 0; 1; 2; : : : ; n. Thus, the minimum
total expected annual cost can be obtained. However, in practice, since the p:d:f : fX is unknown,
even if the value of q is given, we cannot get the exact value of k. Therefore, in order to 5nd the
value of k, we need the following proposition.

Proposition 2. Let X represent the protection interval demand which has a p.d.f. fX (x) with :nite
mean D(T + L) and standard deviation �

√
T + L, then for any real number c¿ 0,

P(X ¿c)6
�2(T + L)

�2(T + L) + [c − D(T + L)]2
: (14)

Proof. See Appendix B for detail.
Because the target level R=D(T + L) + k�

√
T + L as mentioned earlier, if we take R instead of

c in inequality (14), we get

P(X ¿R)6
1

1 + k2
: (15)

Since it is assumed that the allowable stockout probability q during the protection interval is given,
that is, q= P(X ¿R), then from (15) we get 06 k6

√
(1=q)− 1.

It is easy to verify that EAC(T; A; L) has a smooth curve for k ∈ [0;
√

(1=q)− 1]. Thus, we can
establish the following algorithm to obtain the suitable k and hence the optimal T; A and L.

Algorithm
Step 1. For a given q, we divide the interval [0;

√
(1=q)− 1] into N equal subintervals, where N

is large enough. And we let k0 =0, kN =
√

(1=q)− 1 and kj = kj−1 + (kN − k0)=N; j=1; 2; : : : ; N − 1.
Step 2. For each Li; i = 0; 1; 2; : : : n, perform Steps 2-1–2-4.
Step 2-1. For given kj ∈{k0; k1; : : : ; kN}; j=0; 1; 2; : : : ; N , we can use a numerical search technique

to compute Ti;kj from Eq. (13).
Step 2-2. Substituting Ti;kj into Eq. (12) determines Ai;kj .
Step 2-3. Compare Ai;kj and A0.

(i) If Ai;kj 6A0, Ai;kj is feasible, then go to Step 2-4.
(ii) If Ai;kj ¿A0, Ai;kj is not feasible. Take Ai;kj =A0 and evaluate the corresponding values of Ti;kj

from Eq. (13), then go to Step 2-4.

Step 2-4. Compute the corresponding total expected annual cost

EAC(Ti;kj ; Ai; kj ; Li) =
�
�
ln
(

A0

Ai;kj

)
+

Ai;kj + C(Li)
Ti;kj
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+ h
[
DTi;kj

2
+ kj�

√
Ti;kj + Li +

1
2
(1− �)�

√
Ti;kj + Li(

√
1 + k2j − kj)

]

+
��
2Ti;kj

√
Ti;kj + Li(

√
1 + k2j − kj):

Step 3. Find Minkj∈{k0 ;k1 ;:::;kN} EAC(Ti;kj ; Ai; kj ; Li), and let

EAC(Ti;ks(i) ; Ai; ks(i) ; Li) = Min
kj∈{k0 ; k1 ;:::; kN}

EAC(Ti;kj ; Ai; kj ; Li):

Step 4. Find Mini=0;1;2; :::; n EAC(Ti;ks(i) ; Ai; ks(i) ; Li).
If EAC(T ∗; A∗; L∗) = Mini=0;1;2; :::; n EAC(Ti;ks(i) ; Ai; ks(i) ; Li), then (T ∗; A∗; L∗) is the optimal solution;

the value of ks(i) such that EAC(T ∗; A∗; L∗) exists is the optimal safety factor and we denote it by
k∗. Thus, the optimal target level is R∗ = D(T ∗ + L∗) + k∗�

√
T ∗ + L∗.

4. Numerical examples

Example 1. In order to illustrate the above solution procedure, let us consider an inventory system
with the following data used in Ouyang and Chuang [20]: D= 600 units=year, A0 = $200 per order,
h = $20=unit=year, � = 7 units=week, � = $50, and the lead time has three components with data
shown in Table 1. Besides, for setup cost reduction, we take �= 0:07 and �= 2× 10−4.

We solve the cases when �=0; 0:5; 0:8 and 1 and q=0:2 (in this situation, we have k0=0, kN =2)
and let kj = kj−1 + (kN − k0)=N; j=1; 2; : : : ; N − 1, N =200. Applying the Algorithm procedure, we
summarize the optimal solutions as shown in Table 2. Furthermore, to see the eFects of setup cost
reduction, we list the results of 5xed setup cost model [20] in the same table.

From the results shown in Table 2, comparing our new model with that of 5xed setup cost case,
we observe the savings which range from 8.1% to 8.5%. It implies that signi5cant savings can be
easily achieved due to controlling the setup cost. Besides, from the results shown in Table 2, we
see that as the value of � decreases, the smaller setup cost accompanying the larger savings of total
expected annual cost are obtained.

Furthermore, if we knew the p:d:f : fX , we could 5nd an exact optimal solution for the given
distribution. For example, if fX is a normal distribution, then we can obtain the optimal (TN; AN; LN )
by the standard procedure and incur an minimum total expected annual cost denoted by EACN

(TN ; AN ; LN ). For 5xed � and suitable k, if we use (T ∗; A∗; L∗) instead of the optimal (TN; AN; LN )

Table 1
Lead time data

Lead time Normal Minimum Unit
component, duration, duration, crashing cost,
i bi (days) ai (days) ci ($=day)

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0
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Table 2
Summary of the optimal procedure solutions (Ti; Li in week)

� Setup cost reduction model Fixed Setup cost model Savings
(A= 200) (%)

(T∗; A∗; L∗) EAC(·) (T∗; L∗) EAC(·)
0.0 (7.40, 49.80, 4) $3829.04 (11.14, 4) $4184.41 8.5
0.5 (7.55, 50.82, 4) $3800.40 (11.29, 4) $4143.87 8.3
0.8 (7.63, 51.38, 4) $3782.79 (11.39, 4) $4118.86 8.2
1.0 (7.69, 51.76, 4) $3770.86 (11.47, 4) $4101.86 8.1

Note: Savings % = {[EAC(T∗; L∗)− EAC(T∗; A∗; L∗)]=EAC(T∗; L∗)} × 100%.

Table 3
Evaluation of EVAI

� k∗ (T∗; A∗; L∗) EACN (·) kN (TN ; AN ; LN ) EACN (·) EVAI

0.0 1.98 (7.40, 49.80, 4) $2862.35 1.83 (4.52, 30.44, 4) $2697.08 $165.27
0.5 1.92 (7.64, 51.43, 4) $2864.24 1.82 (4.54, 30.58, 4) $2694.35 $169.89
0.8 1.89 (7.63, 51.38, 4) $2854.61 1.81 (4.56, 30.71, 4) $2692.68 $161.93
1.0 1.87 (7.69, 51.76, 4) $2853.65 1.81 (4.56, 30.72, 4) $2691.54 $162.11

Note: kN stands for the optimal safety factor when the protection interval demand X follows a normal distribution.

for a normal distribution demand, then we can get EACN (T ∗; A∗; L∗). Hence, the added cost by
using the minimax distribution free procedure instead of the normal distribution procedure is given
by EACN (T ∗; A∗; L∗) − EACN (TN ; AN ; LN ). This is the largest amount that we would be willing to
pay for the knowledge of fX . This quantity can be regarded as the expected value of additional
information (EVAI).

Example 2. Using the same data as in Example 1, we compare the procedures for the worst case
distribution against the normal distribution and the results are tabulated in Table 3. For example, in
the case of � = 1, we have (T ∗; A∗; L∗) = (7:69; 51:76; 4) and (TN ; AN ; LN ) = (4:56; 30:72; 4), hence,
the total expected annual cost EACN (T ∗; A∗; L∗) = $2; 853:65 and EACN (TN ; AN ; LN ) = $2; 691:54,
respectively. And thus, EVAI = EACN (7:69; 51:76; 4)− EACN (4:56; 30:72; 4) = $162:11.

5. Concluding remarks

The primary purpose of this paper is to present a mixture of backorders and lost sales periodic
review inventory model for minimizing the sum of the ordering cost, holding cost, stockout cost,
and lead time crashing cost, where the review period, setup cost and lead time are considered as
decision variables. In our study, we do not assume the probability distribution of the protection
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interval demand and apply the minimax principle to solve the problem. Numerical results show that
as the value of � decreases, the smaller setup cost accompanying the larger savings of total expected
annual cost could be realized.
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Appendix A.

Proof. For 5xed L∈ [Li; Li−1], EAC(T; A; L) is convex in (T; A).
For 5xed L∈ [Li; Li−1], taking the 5rst partial derivatives of EAC(T; A; L) with respect to T and

A and setting the obtaining results equal to zero results in

0=
@EAC(T; A; L)

@T

=−A+ C(L)
T 2 +

hD
2

+
h�
2
(T + L)−1=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

+
��
4T

(T + L)−1=2(
√

1 + k2 − k)− ��
√
T + L

2T 2 (
√

1 + k2 − k) (A.1)

and

0 =
@EAC(T; A; L)

@A
=− �

�A
+

1
T
: (A.2)

From (A.1), we obtain
A+ C(L)
2T 2(T + L)

=
hD

4(T + L)
+

h�
4
(T + L)−3=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]

+
��
8T

(T + L)−3=2(
√

1 + k2 − k)− ��
4T 2 (T + L)−1=2(

√
1 + k2 − k): (A.3)

Next, we obtain the second-order partial derivatives as follows:
@2EAC(T; A; L)

@T 2 =  (T )− h�
4
(T + L)−3=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]
; (A.4)

where

 (T ) =
2[A+ C(L)]

T 3 − ��
8T

(T + L)−3=2(
√

1 + k2 − k)

− ��
2T 2 (T + L)−1=2(

√
1 + k2 − k) +

��
√
T + L
T 3 (

√
1 + k2 − k);

@2EAC(T; A; L)
@A2 =

�
�A2 =

1
TA

(by (A:2)) (A.5)
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and
@2EAC(T; A; L)

@T@A
=

@2EAC(T; A; L)
@A@T

=− 1
T 2 : (A.6)

In order to verify that, for 5xed L∈ [Li; Li−1], EAC(T; A; L) is convex in (T; A), we formulate the
Hessian matrix H as follows:

H =




@2EAC(T; A; L)
@T 2

@2EAC(T; A; L)
@T@A

@2EAC(T; A; L)
@A@T

@2EAC(T; A; L)
@A2


 :

Then, for 5xed L∈ [Li; Li−1], we proceed by evaluating the principal minor of H at point (T; A).
From (A.4), the 5rst principal minor of H denoted by |H11| is

|H11|= @2EAC(T; A; L)
@T 2 =  (T )− h�

4
(T + L)−3=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]
: (A.7)

Further, we let

˝(T ) =
A+ C(L)
2T 2(T + L)

− ��
8T

(T + L)−3=2(
√

1 + k2 − k) +
��
4T 2 (T + L)−1=2(

√
1 + k2 − k); (A.8)

then, from (A.3), it implies

˝(T )¿
h�
4
(T + L)−3=2

[
k +

1
2
(1− �)(

√
1 + k2 − k)

]
: (A.9)

Therefore, from (A.7) and (A.9), we get

|H11|¿ (T )−˝(T )

=
[A+ C(L)](3T + 4L)

2T 3(T + L)
+

��(T + 4L)
4T 3 (T + L)−1=2(

√
1 + k2 − k)¿ 0: (A.10)

From (A.4)–(A.6), we obtain the second principal minor of H denoted by |H22| as
|H22| =

{
 (T )− h�

4
(T + L)−3=2

[
k +

1
2
(1− �)(

√
1 + k2 − 1)

]}
1
TA

− 1
T 4

¿
{
[A+ C(L)](3T + 4L)

2T 3(T + L)
+

��(T + 4L)
4T 3 (T + L)−1=2(

√
1 + k2 − k)

}
1
TA

− 1
T 4 (by (A:10))

¿
{
3[A+ C(L)]

2T 3

}
1
TA

− 1
T 4

¿
[
A
T 3 +

C(L)
T 3

]
1
TA

− 1
T 4

=
C(L)
T 4A

¿ 0:

Therefore, it is clear to see that, for 5xed L∈ [Li; Li−1], EAC(T; A; L) is convex in (T; A).
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Appendix B.

Proof. For any real number a(	= −c), we have

P(X ¿c) = P(X + a¿c + a)

6P[(X + a)2 ¿ (c + a)2]

6
E(X + a)2

(c + a)2
(by Morkov inequality)

6
�2(T + L) + [D(T + L) + a]2

(c + a)2
: (B.1)

The right-hand side of the last equality has a minimum value when

a=
�2(T + L)

c − D(T + L)
− D(T + L):

Because (B.1) holds for any a(	= −c), hence, if we put a= (�2(T + L)=c − D(T + L))− D(T + L)
into (B.1), we get

P(X ¿c)6
�2(T + L)

�2(T + L) + [c − D(T + L)]2
:

The proof is completed.
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