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中文摘要 

 

全世界大部分國家都曾經遭遇崩塌地引發之後果，其形式包括經濟衰

退、數十億美元的損失和更多的傷亡。崩塌地成因有先天性的自然因素或

裸露的陡峭斜坡沖刷而形成，或者是由自然災害引起的如地震，火山爆發，

積雪融化和豪雨等。氣候變遷是一個全球性挑戰，其極端氣候的暴雨，對

有些易引發大規模崩塌地區，將面臨災難性後果。因此這些挑戰急需發展

一套快速有效的評估系統，能產生錯誤率較低之崩塌分類成果，有效且精

確判釋出崩塌區位與非崩塌區位供後續坡地防災應用。 

台灣在 1999 年 9 月 21 日發生芮氏 7.3 級地震，造成灣中部地區山坡

地大規模的崩塌裸露，對該地區之經濟、聚落、設施和生態系統造成嚴重

破壞。本研究以受災較嚴重之九九峰地區為試區，透過資料探勘技術對震

災後 SPOT影像資料進行判釋分析，探討崩塌區位判釋之最佳方法。本研究

評估九種資料探勘方法，首先以兩個光譜指數NDVI及TBI來萃取崩塌與非

崩塌區位之光譜影像值，並建立其判釋模式萃取崩塌區位，並導入九種資

料探勘方法，包括四個非監督分類法如 K-means、Minibatch K-means、

BIRCH和GMM等，以及5個監督分類法如SVM、DT、ET、RF和XGBoost

等，進行崩塌分類成果及精度比較，並計算出各種定量統計數據以供驗證，

包括總體精確度(OA)、Kappa值、使用者精度(UA)及生產者精度(PA)等。 

研究結果指出 K-means 方法優於其他分類方法，其總體精確度為

95.94%，相較於 XGBoost 為 95.49％、DT 和 RF 為 95.38％，而 SVM方法

之總體精確度最低為 92.51％。整體而言，這九種方法都有還不錯的表現，

總體精確度皆達到 90％以上，表示其在判釋崩塌地上具重要意義。而未來
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對於崩塌區位之判釋應用上，建議可結合類神經之深度學習演算法或加入

其他地形因子以有效提升判釋之精確度。 

關鍵詞: 氣候變化、崩塌區位、光譜指數、資料探勘技術 
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ABSTRACT 

 

Major countries worldwide face the consequences of landslides in the form of 

reduced economy, damages worth billions, and higher fatalities. Landslides are the 

result of upsetting steeper inclines that were previously preconditioned or bare of 

vegetation. They are caused by natural hazards such as earthquakes, volcanic 

eruptions, melting of snow, and heavy rainfall showers. 

Climate change represents a global challenge that induces frequent volcanic 

and seismic activities due to tectonic excitation, and torrential rainfall with an 

abnormal downpour. Some regions are not preconditioned to tolerate such extreme 

weather changes and face cataclysmic repercussions in the form of landslides. Such 

challenges call for urgent development of a fast and efficient assessment system 

generating error-free Landslide Inventory Maps (LIM) that depicts a clear boundary 

between affected and unaffected regions.  

Taiwan is one such country that has been enduring such calamities throughout 

recent years. One particular catastrophic incident in the form of an earthquake 

having a magnitude of 7.3 in Richter scales which occurred on 21st September 1999, 

devastated the central part of Taiwan inflicting serious damages to its economy, 

human livelihood, infrastructure, and ecosystem. Mt Jou-Jou one of the severely 

impacted regions was adopted for this study. Analysis of Geo-Spatial data with data 

mining is cost-efficient and reduces dangerous fieldwork. 

This research explores the potential of nine data mining techniques along with 

a pixel-based image differencing on two spectral indices i.e., Normalized Difference 

Vegetation Index (NDVI) and Total Brightness Index (TBI) derived from multi-

temporal SPOT satellite imagery for landslide detection. Landslide maps were 

generated and compared from four unsupervised i.e., K-means, Minibatch K-means, 
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Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), and 

Gaussian Mixture Models (GMM), and five supervised learning algorithms which 

included Support Vector Machines (SVM), Decision Tree (DT), Extra Trees (ET), 

Random Forest (RF), and Extreme Gradient Boosting (XGBoost). For comparison, 

a validation set was employed from which various quantitative statistics were 

computed such as Overall Accuracy (OA), Kappa Statistics (K), User’s Accuracy 

(UA), and Producer’s Accuracy (PA). 

The results suggested that the K-means algorithm outperformed other 

algorithms and showed the highest overall accuracy of 95.94% with a close follow-

up from XGBoost (95.49%), DT, and RF (95.38%). The lowest accuracy was 

yielded by the SVM algorithm of 92.51%. In general, all the algorithms delivered 

outstanding performance and achieved overall accuracies well above 90% indicating 

their significance for identifying landslides.  

The overview of the conclusion in this research stated that landslide mapping 

using data mining algorithms and SPOT-derived spectral indices can provide 

essential surface information that can further act as an efficient tool for future 

landslide detection problems & research such as comparison with other deep 

learning algorithms and further addition of topographic, geologic, morphologic and 

lithologic information to the dataset. However, the proposed system in this research 

can be further used in regions with similar topographic and geologic nature.  

Keywords: Climate Change, Landslide Inventory Map, Spectral Index, Data Mining
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Chapter 1 Preface 

 

1.1 Introduction 

 

Landslides are considered as a third most significant natural hazard that has 

distressed several countries including loss of lives and damages costing billions of 

dollars worldwide. They are defined as the mass movement of debris, rocks, and soil 

in large volumes, or slope failures. Some triggering factors include heavy rainfall, 

earthquakes, volcanic eruptions, snowmelt, etc. Sometimes, landslides are also 

caused by man-made disturbances such as quarrying, construction, unplanned 

landscape changes, and urban expansion in addition to natural factors (Tran et al., 

2019). Their existence can also be ascribed by the geological, and meteorological 

processes on earth such as lithology, and slope morphology (Ma et al., 2020). Often 

landslides are the result of rocks, soil, and slope preordained to fail. They are 

considered a global threat that endangers human lives and causes several disruptions 

by substantial damages to highways, bridges, buildings, and other human-inhabited 

areas. Therefore, the requirement of an early warning system backed by accurate 

landslide susceptibility mapping is imminent. However, susceptibility mapping first 

requires prior information on past landslide events that occurred within the last 10 

to 15 years and their triggering factors. For this purpose, a comprehensive Landslide 

Inventory Map with precise landslide spatial signatures and distribution is necessary. 

Landslide identification or detection is the process of accurately delineating 

the boundary between landslides and non-landslide regions. These regions are 

usually depicted in a map which is generally known as a Landslide Inventory Map 

(LIM) which includes potential and comprehensive landslide patterns. Landslide 

identification plays a crucial role in disaster risk assessment and management 

(Danneels, 2007; Chen et al., 2014; Sameen et al., 2019; Wang et al., 2020). The 
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landslide inventory requires regular updates following major climatic events such as 

heavy rainfall, seismic and volcanic events, etc. Thus, such information should be 

regularly supplied to decision-makers for policy-making and mitigation strategies.  

Landslide identification is conventionally conducted through visual 

interpretation of aerial photographs which requires field inspection that consumes 

time, costly, labor-intensive, and sometimes dangerous or inaccessible (Lei et al., 

2018; Pradhan, 2018; Sameen, 2019; Tran et al., 2019). Occasionally, this technique 

fails to detect small-scale failures which could increase the false negatives in the 

resulting generated LIM. In this context, integrating remote sensing data in a 

comprehensive framework of landslide detection is cost-effective, due to its wide 

availability, accessibility, and coverage which contributes to the rapid up-gradation 

of landslide inventory. Several remote sensing satellite sensors are available in the 

market that provides images with large coverage along with incredible spatial 

resolution. Some of the dominant remote sensing sensors are “Optical Remote 

Sensing and Synthetic Aperture Radar” (SAR), “Airborne Laser Scanning” 

(LiDAR), “Satellite Pour I ‘Observation de la Terre” (SPOT), “Advanced 

Spaceborne Thermal Emission, Reflection Radiometer” (ASTER), “Interferometry 

Synthetic Aperture Radar” (InSAR), “RapidEye”, “Unmanned Aerial Vehicle” 

(UAV), and other sensors include “Landsat”, “IKONOS”, “Quickbird”. However, 

directly implementing raw remote sensing data without prior preprocessing or 

suitable feature subset extraction and selection could severely diminish the accuracy 

of the resulting landslide inventory map. Besides, the proper integration of 

techniques that develops decision boundaries or rules between these features and the 

landslides is also vital. On this basis, incorporating data mining techniques with 

remote sensing data could further contribute to the advancements of landslide 

detection technology and produce a more sophisticated framework for future studies. 
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In addition to remote sensing and data mining, some image analysis methods are 

also incorporated in landslides studies: “Pixel Based Image Analysis” (PBIA) and 

“Object-Based Image Analysis” (OBIA). Pixel-based methods only have a single-

pixel as their core processing element in which image correlation is commonly 

implemented such as image stacking or image differencing. Object-based also 

depends on single pixels as well as an image object which is composed of pixels 

having similar spectral signatures (Sameen et al., 2019), same as clusters. One of the 

widely implemented techniques in landslide studies is image segmentation (Li et al., 

2015; Keyport, 2018; Tavakkoli et al., 2019). Unlike PBIA, the OBIA can be 

implemented on multiple scales (Pradhan et al., 2018).  

In general, the integration of suitable remote sensing image analysis, feature 

selection, and data mining techniques can configure a thorough landslides analysis 

and produce precise landslide inventory maps. These data mining techniques are 

categorized into unsupervised and supervised approaches: the former requires no 

prior training whereas the latter needs pre-defined labeled data. In recent years, 

numerous geologic researchers incorporated such frameworks with comprehensive 

comparisons and produced highly accurate landslide maps. Some studies included 

feature selection along with the machine learning model’s comparison. Wang et. al. 

(2020) integrated topographic, rainfall, geologic, lithological factors to compare 

CNN, SVM, and RF models. Another study featured factor importance and 

compared several types of decision tree models (Alkhasawneh et al., 2014). Pradhan 

(2018) produced a comparison of six feature selection techniques using LiDAR point 

cloud orthophotos and their effects on classification using SVM and RF. A detailed 

feature quantitative statistical analysis was proposed by Chen et. al. (2014) on 

LiDAR-derived Digital Terrain Model (DTM) with RF model. Sameen & Pradhan 
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(2019) proposed a fusion of spectral and topographic information to compare deep 

learning models for landslide detection.  

Predictive systems based on models by machine learning (data mining) are 

under constrained. For example, models that show superior performance on a 

particular dataset may diverge on circumstances and datasets outside their local area 

due to the complex earth system (Ma et al., 2020). Hence, landslide detection based 

on data mining faces various challenges from the uncertain and complex dataset. 

Consequently, Ghorbanzadeh et. al. (2019) investigated the effects of data 

augmentation to artificially increase training samples on deep learning and machine 

learning models. Some studies also conducted a detailed comparison between pixel-

based and object-based approaches for landslide detection. Li et. al. (2015) 

comprehensively compared them and investigated their sensitivity to feature 

selection and suggested a semi-automated technique with OBIA for forested 

landslide identifications. Few studies have also compared PBIA and OBIA along 

with impacts of initially defined clusters on unsupervised algorithms (Keyport et al., 

2018; Tran et al., 2019). Image segmentation-based object analysis was performed 

on both single and multi-scale for fuzzy classification and stacking of machine 

learning models together by Lei et. al. (2018) & Tavakkoli et. al. (2019), 

respectively. 

Taiwan is a small island nation located on the East Asia coast and west of the 

Pacific (Tsai et al., 2010). This country is regularly distressed by natural hazards 

such as earthquakes, torrential rainfalls, forest fires, and typhoons (Lin et al., 2004). 

These hazards are the prime reasons for inducing landslides in its mountainous 

region. These regions have rugged terrains and are believed to have delicate geologic 

conditions that result in severe landslides and floods due to heavy precipitation (Tsai 

et al., 2010). Past research works in Taiwan mainly focused on analyzing and 
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providing adequate information about the landslide and their contributing factors. 

The research works continuously strive to update the landslide inventory and provide 

accurate info on damaged areas to local authorities for remedial strategies and 

programs for landslide prevention. Tsai et. al. (2010) produced a detailed landslide 

map and analyzed its contributing factors in southern Taiwan following the 

devastating Typhoon Morakot in 2009. 

On 21st September 1999, Taiwan was devastated by a cataclysmic earthquake 

that severely damaged the ecosystem, geographic terrain, and human lives. The 

epicenter was Jiji (Chi-Chi) Township, Nantou County, Central Taiwan. The 

earthquake was named after its epicenter and date of occurrence as Chi-Chi or 921-

earthquake, respectively. It was considered the second-deadliest earthquake in the 

history of Taiwan after the Shichiku-Taichu Earthquake in 1935. The seismic event 

during the 921-earthquake reached the Richter scale of 7.3 at the center (Lin et al., 

2004; Lin et al., 2006; Lin, 2008; Yang et al., 2017). The earthquake-induced severe 

landslides representing a large movement of stones and rocks that turned into debris. 

Under such circumstances damage to properties, utilities, crops, and danger to 

human lives is inevitable. The Chi-Chi earthquake caused several difficulties 

including dammed lakes and high casualty. Several studies were conducted 

following the seismic event to provide adequate information on the damages. Wan 

(2010) conducted a landslide study and modeling using data mining techniques in 

Shei-Pa National Park which was a major source of energy for Central Taiwan. 

Another landslide area i.e., Chiufenershan was monitored for vegetation restoration 

following the 921 earthquake-induced landslides (Lin et al., 2008). However, one of 

the severely damaged hillslopes due to landslides was on Mt Jou-Jou. Majority of 

the upper hillside was bare of vegetation that resulted in a dramatic rise of suspended 

solids in the air that severely reduced its quality. Hence, the local authorities 
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announced Mt Jou-Jou as a natural reservation park for landslide and restoration 

purposes. Mt Jou-Jou has been a case study in several past research works following 

the earthquake. Lin (2004) found out that the vegetation recovery rate after one year 

of the earthquake was 47.1% and the vegetation succession reached 89.69% after six 

years (Lin et. al. 2006). However, a detailed study was conducted by Yang et. al. 

(2017) conducted an extended vegetation assessment using 14 SPOT satellite images 

and pointed out that short-term observation and omission of seasonal variations 

could provide inadequate information on actual vegetation status. Hence, past 

research works in Taiwan showed vegetation condition as one of the most prominent 

as well as a preventive factor on landslides.  

1.2 Research Objectives 

 

The primary objective of this study is to investigate and develop an efficient 

comparative framework on some of the unexplored algorithms with widely adopted 

ones to detect landslides from remote sensing data. To accomplish this, specific 

objectives of the present study are stated below:     

(1) To establish a comprehensive framework of four unsupervised and five 

supervised methods to identify the topographic signatures of landslides and 

non-landslide terrains using SPOT-derived spectral index. Specifically, the 

unsupervised approach includes K-means, Minibatch K-means, Gaussian 

Mixture Models (GMM), and Balanced Iterative and Reducing Clustering 

using Hierarchies (BIRCH) whereas the supervised approach mainly 

comprises of Support Vector Machines (SVM), Decision Tree (DT), Extra 

Trees (ET), Random Forest (RF), and Extreme Gradient Boosting (XGBoost).  

(2) To study the implementation of pixel-based image differencing method from 

bi-temporal images to highlight the landscape undergoing drastic changes 

post-natural hazard. 
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(3) To analyze the characteristics of features such as Normalized Difference 

Vegetation Index (NDVI) and Total Brightness Index (TBI) simultaneously 

in locating the landslide areas.  

(4) To compare nine generated landslide maps and determine the best algorithm 

for landslide inventory. 

1.3 Research Framework  

 

This study includes a novel approach to compare nine data mining algorithms 

for landslide detection which are subdivided into four unsupervised and five 

supervised algorithms. The study first includes the preprocessing of the raw spectral 

image to reduce contrast and noise in the pixels. Features derived from the digital 

values of the pixels are extracted. Due to the multi-temporal nature of the images, 

pixel-level image differencing was conducted to visualize regions undergoing 

drastic change post-earthquake. The unsupervised approach doesn’t require a pre-

labeled dataset; hence, clustering was directly conducted on all the pixels. The 

resulting clusters were manually appointed to landslide (L) and non-landslide (NL) 

groups. The supervised algorithms were precisely trained on the extracted dataset 

from the differenced images. The major drawback is the ill effects on their 

performance by imbalance and noise in the dataset. These effects are handled 

through various external techniques and in-built features inside the algorithms that 

are widely known in the data mining community. The model overfit and underfit is 

also monitored before its deployment for landslide identification. The generated 

landslide maps from all the algorithms were quantitatively compared based on 

several statistical values. The significance of the correlation between features is also 

established for landslide assessment through this research. 

The remainder of the thesis is structured as follows: Chapter 2 introduces a 

detailed review of the past research works related to landslides and the proposed 
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study area. Chapter 3 includes a detailed geographic and geologic description of the 

study area followed by a detailed discussion on the theory, mathematics, and 

working principles behind each algorithm along with the proposed framework which 

includes integration of remote sensing data, its preprocessing, clustering, supervised 

training methodology, and quantitative comparative tools for the generated landslide 

maps has also been presented.  

The comparative results obtained are presented in Chapter 4 in the form of 

quantitative statistical analysis through validation sets for each generated Landslide 

Inventory Map. In addition to this, the training of each supervised algorithm was 

checked based on overfitting and underfitting through benchmarking methods.  

Finally, Chapter 5 includes an interpretation of the acquired results along with 

a detailed discussion on their significance concerning the past research works. A 

brief conclusion to this study as well as suggestions for future researches is also 

illustrated in this chapter. 
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Chapter 2 Literature Review 

 

Landslide studies typically include three core aspects where detection is the 

foundational element on which other aspects such as prediction and warning system 

maximize. Landslide detection studies generally consist of mapping moderately or 

severely affected regions from landslides and their triggering characteristics. 

Landslide detection mostly includes three elements where a detailed landslide 

inventory map is generated: (1) a suitable feature analysis that analyses each factor 

associated with landslides, (2) image analysis in which an image is analyzed based 

on single-pixel or in coalition with its neighboring pixel and finally, (3) a technique 

(generally data mining) that integrates the analyzed features and image to establish 

a decision on whether a region is severely affected by landslides or not. However, 

learning about the suitability of these techniques in previous studies is vital for their 

applications on upcoming landslides over new terrains that were not previously 

studied or affected by landslides.  

This chapter illustrates a detailed overview of the past landslide studies that 

analyzed and compared various features, image analysis techniques as well as some 

of the widely popular data mining techniques. A detailed survey by Ma et. al. (2020) 

includes discussion on each of the core elements associated with landslide 

prevention right from the beginning stages of landslide detection to the final stages 

of developing an early warning system. The chapter also includes studies on some 

other algorithms that were applied in various fields but effectively integrated remote 

sensing data and provides a critical analysis of their works. The review also includes 

some literature from Taiwan as well as some of the popular works on Mt Jou-Jou 

following the Chi-Chi (921) earthquake. 
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2.1 Feature Analysis for Landslide Detection and Susceptibility Mapping   

 

Feature analysis involves a comparison of various factors, their selection, and 

fusion techniques in addition to their sensitivity to data mining techniques. Landslide 

maps generated should depict the interrelation between landslides and their causative 

factors (Pradhan et al., 2018). Hence, several studies in the past have evaluated and 

compared various geological and morphological information derived from remote 

sensing data and investigated their impacts on the predictive capabilities of some of 

the well-favored data mining algorithms. Features related to landslides consist of 

topographic, geologic, and rainfall data. Wang (2020) implemented these features 

and established three geodatabases based on recent, relict, and joint (both recent & 

relict) landslides and investigated five supervised machine learning algorithms on 

these databases for landslide identification. Their study revealed that the 

“Convolution Neural Networks” (CNN) model achieved the highest landslide 

detection accuracy of 92.5% on the recent landslide database compared to other 

algorithms for its powerful abilities to preprocess multi-dimensional data and feature 

extraction. The configuration for the most accurate CNN model was 11 layers (i.e., 

four convolutional, four max-pooling, and three fully connected layers) and was 

termed as deeper-CNN (DCNN-11). The paper concluded that all the models showed 

the highest accuracy on the recent landslide database among all three databases and 

features like Slope Gradient, Aspect, Curvature, and Topographic Wetness Index 

(TWI) were the prominent factors.   

Feature selection plays a pivotal role in the landslide detection process and 

heavily influences its accuracy. Chen (2014) emphasized feature selection and 

evaluated features computed from LiDAR-derived DTM. This study proposed a 

framework that combines LiDAR derivatives, a method for feature selection, and 

the Random Forest algorithm. The generated landslide inventory map was processed 
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to make finer boundaries between landslide and non-landslide regions by a technique 

known as “Canny Operator”. The quantitative analysis of the landslide map revealed 

that the feature selection positively influenced the overall accuracy by 0.44% 

approximately. The feature set was reduced remarkably by 74% which significantly 

reduced the computation time and complexity of the model. The highest accuracy 

achieved in this study was 78.24% which is notably lower than expected. 

However, possible combinations of dominant factors should also be 

investigated for their influence on the data mining models. In this context, Pradhan 

& Mezaal (2018) suggested the evaluation of feature selection techniques due to 

irregularities in results obtained from different selection techniques. The study 

assessed six feature selection methods and compared their results using SVM and 

RF. The features were the “Digital Surface Model” (DSM) and “Digital Elevation 

Model” (DEM) derived from LiDAR. The feature selection methods adopted for 

their study were “Ant Colony Optimization” (ACO), “Gain Ratio” (GR), “Particle 

Swarm Optimization” (PSO), “Genetic Algorithm” (GA), “Correlation-based 

Feature Selection” (CFS) and a Random Forest-based technique also known as 

embedded method (RF). Both the algorithms i.e., SVM and RF yielded the highest 

detection accuracy when based on optimal features from CFS, ACO, and RF. 

However, all the six feature selection methods chose identical features but provided 

varied combinations (i.e., ranks) and eventually yielded dissimilar landslide 

accuracy. On this basis, the paper briefly touches on the importance of investigating 

feature combinations for landslide detection. This research was conducted by 

subdividing the study area into two zones designated as test site-1 and test site-2. 

Among the two algorithms, the RF model achieved the overall highest accuracy of 

88.68% (86.82%) on the optimal combination of features (all features) whereas 

SVM obtained 86% (84%) on site-1 and site-2, respectively. The study discovered 
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that the sensitivity of the SVM model to feature selection was much higher than the 

RF model. 

Another study from Tran et. al. (2019) synthesized the feature selection and 

their effects on a predefined number of clusters for unsupervised learning. The study 

compared two unsupervised algorithms namely K-means and GMM for landslide 

identification and utilized feature extractors from LiDAR-derived DEMs. The study 

generated a total of four landslide maps for each topographic feature by initially 

defining the clusters at 2, 3, 4, and 5. Four topographic features such as Roughness, 

Slope, Local Topographic Range, and Variability were evaluated. Hence, a total of 

16 landslide maps were generated and comprehensively compared. The comparison 

revealed that both algorithms achieved the highest overall accuracy of about 87%. 

Quantitatively, the GMM model achieved the highest accuracy of 87.09% on only 

roughness factor when the number of predefined clusters was 4 whereas K-means 

achieved 87.19% which was also on roughness but only required 2 clusters centroids. 

Nonetheless, only evaluation on feature selection and training the models 

based on optimal features does not describe the full picture on feature analysis for 

landslide identification. Hence, a study from Ghorbanzadeh (2019) investigated the 

impact of layer stacking on several deep learning and machine learning models for 

landslide detection. This study fused spectral data from the “Rapid Eye” satellite and 

topographic information extracted from the “Japanese Aerospace Exploration 

Agency’s” JAXA ALOS sensor from 2016. The study discovered that topographic 

features slightly decreased the landslide detection when compared to only spectral 

features (R, G, B, NIR, and NDVI). Although, the topographic features were helpful 

for the classification of settlement and landslide areas. Here, only the slope layer 

was beneficial because landslides generally occur on steeper slopes, unlike 

settlement areas. The study indicated that simply adjoining two or more suitable 
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features together side by side in a database will not always yield improvements. 

Accordingly, the study from Sameen & Pradhan (2019) analyzed two feature 

adjoining techniques i.e., layer stacking and feature-level fusion, and evaluated their 

influence on popular deep learning techniques such as “Residual Neural Network” 

(RNN) and CNN. The feature fusion techniques were conducted by combining 

topographic information with spectral bands. The research concluded that the 

feature-level fusion enhanced the model’s accuracy while the network depth, 

architecture, and parameters remained unchanged. Interestingly, the layer stacking 

degraded the accuracy of all models regardless of their architecture and depth when 

compared to models that were only based on spectral information. The paper found 

that residual networks showed better performance only on the spectral dataset, 

whereas, CNN yielded higher performance on the topographic dataset only.  

These studies indicate that the architecture of deep learning models should be 

designed according to the nature of the input dataset. The studies also highlight that 

the superiority of deep learning models over other machine learning techniques is 

quite limited to their depth and architecture.  

Landslide Susceptibility Mapping (LSM) means locating regions that are 

vulnerable to landslides in the future. However, susceptibility mapping depends on 

the results conducted through previous landslide identification studies. The landslide 

susceptibility accompanies a straightforward principle: “The past and the present are 

the keys to the future” (Ma et al., 2020). Thus, previous studies on the area can 

provide ample information on major triggering factors, and climatic condition which 

promotes the occurrence of landslides. One such study from Nhu (2020) first located 

152 landslides based on InSAR, Google Earth (GE), and field surveys for training 

three machine learning models to generate Landslide Susceptibility Maps i.e., 

Logistic Model Tree (LMT), Random Forest (RF), and Logistic Regression (LR). 
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The validation of the detected landslides was conducted on 20% of detected 

locations using a handheld Global Positioning System (GPS). Hence, the models 

were trained on 80% (122 landslides) and validated on the 20% locations (30 

landslides). The models were then employed to generate susceptibility maps using 

17 features. In this study, LMT outperformed other algorithms and achieved the 

highest rank based on the adopted evaluation metrics.  

However, the previous study highlights little about the major contributing 

factors and only gave a general idea of the vulnerable sites which in turn could hinder 

the process of pinpointing the exact reasons behind vulnerability and forming 

mitigation strategies. Consequently, Sahin (2020) generated LSM using 15 

causative factors and 105 landslide sites, from which 70% of the sites were used for 

training and the rest 30% for testing. This study built three predictive models based 

on “Gradient Boosting Machines” (GBM), XGBoost, and RF. The study adopted a 

symmetrical uncertainty measure to find the most influential factor and utilized these 

features to configure landslide predictive models. The most critical factors for 

landslides were Slope, Elevation, Topographic Wetness Index (TWI), and Sediment 

Transport Index (STI). Based on these, the XGBoost model achieved the highest 

accuracy with a kappa value of 0.9121, whereas the RF model yielded 0.8762 and 

the lowest value of 0.8283 by the GBM model. All the proposed algorithms in this 

study provided reasonable performance and declared the robustness of tree-based 

algorithms in landslide susceptibility. However, a study from Pradhan & Kim 

(2020) demonstrated otherwise. This research compared ensembled algorithms like 

RF, and XGBoost with a deep learning model i.e., Deep Neural Network (DNN) for 

developing a susceptibility map for shallow landslides induced by rainfall. The 

landslide inventory was acquired from historical sources, aerial images, and field 

surveys contained 748 sites for training and 219 sites for testing. The DNN model 
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achieved the highest overall testing accuracy of 83.71% whereas XGBoost achieved 

74.73% and the RF model yielded the lowest accuracy of 68.19%. The most 

important factor in this study was found to be the proximity to drainage which is 

significantly important during higher precipitation to channel excess water 

accumulate over terrains. The slope factors were equally important and ranked 

second as the most influential cause. However, as stated earlier the performance of 

deep learning models strictly based on their depth and architecture and may not 

outperform other statistical algorithms with every single configuration (Sameen et 

al., 2019; Ghorbanzadeh et al., 2019)     

Decision tree algorithms have been widely adopted for their simplicity and 

non-complex tree structure and have largely contributed to landslide susceptibility. 

Alkhasawneh (2014) proposed to compare four distinct Decision Tree models 

(CHAID, Exhaustive CHAID, QUEST, and CRT) by adopting the significance of 

21 causative factors on landslides for susceptibility mapping. This study discovered 

five important factors i.e., Slope Angle, Distance from Drainage, Surface Area, 

Slope Aspect, and Cross Curvature that can contribute to future landslides. The 

highest accuracy achieved was 82% by exhaustive CHAID. Similarly, Park (2018) 

developed a relation between landslides and their controlling factors using decision 

tree models. However, a CRT-based decision tree was omitted from this study for 

susceptibility. Here, the prediction model was based on 20 factors and 548 landslide 

sites from which half were utilized for modeling and another half for verification. In 

this study, the slope was found to be the most important factor for landslides. 

Although, the highest accuracy was achieved by CHAID of 87.1%, while, 

exhaustive CHAID nearly followed suit by achieving 86.9%. The QUEST algorithm 

achieved an accuracy of 82.8% which was higher than the previous study by 

Alkhasawneh et. al. (2014), which only accomplished 74% indicating that QUEST 
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and CRT-based decision trees can be omitted from future landslide susceptibility 

studies.  

These research works indicate the importance of accurately detecting 

historical landslides which in turn could provide information on endangered sites for 

future disaster that would contribute to diminishing the damages and protect 

ecological habitats including human settlement. 

2.2 Image Analysis in Landslide Identification 

 

Image analysis is one of the core elements in the development of a landslide 

detection framework. There are two types of image analysis techniques that are 

generally employed with remote sensing: “Object-based Image Analysis” (OBIA) 

and “Pixel-based Image Analysis” (PBIA). PBIA only favors one single pixel as its 

core analysis approach whereas OBIA favors contextual analysis that considers 

neighboring pixels along with its core pixel. Most of the studies in landslide 

detection favored OBIA for its superiority in providing more accurate landslide 

maps. However, its accuracy heavily relies on object homogeneity and parameter 

optimization. Hence, one should be careful in selecting and optimizing the 

parameters of an object (segment). One of the previously discussed studies by 

Pradhan & Mezaal (2018) adopted fuzzy-based segmentation (FbSP-optimizer) to 

optimize object parameters and obtained initial training sites for supervised 

algorithms. The Object-based analysis can be conducted on multiple scales. The 

study from Tavakkoli et. al. (2019) compared the conventional OBIA with the 

multi-scale segmentation combined through “Dempster-Shafer Theory” (DST) for 

classification results. This study ensembled three machine learning algorithms i.e., 

“Multilayer Perceptron Neural Network” (MLP-NN), Logistic Regression (LR), and 

RF as base classifiers instead of using them individually. Images from PlanetScope 

optical satellite and DEM were adopted for this research. The integration of multi-
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scale segmentation by DST significantly improved accuracy across all algorithms. 

The accuracy ranged from 83.3% to 87.2% when only objects with optimal 

parameters were used. However, after integrating the DST to combine multi-scale 

results remarkably improved the accuracy up to 90%. The quantitative assessment 

also revealed that the accuracy of stacked algorithms achieved the best accuracy 

among all scales when combined with DST. 

Object-based image segmentation can be applied to various stages of the 

landslide detection jointly with the Pixel-based approach. Danneels (2007) first 

suggested obtaining the pixel-based classified image from the maximum likelihood 

algorithm and then the image segmentation was conducted on it through double 

thresholding technique in conjunction with histogram-based thresholding. The 

results were compared with classification from ANN. The input feature used for this 

research was raw spectral bands and NDVI separately from the ASTER satellite. 

The classification based on NDVI provided the best accuracy. The paper concluded 

that the ANN classification method was slightly better than the proposed likelihood-

based algorithm. 

Some of the studies established a detailed comparison of PBIA and OBIA on 

landslide detection accuracy. A study from Li (2015) compared these image analysis 

techniques with two machine learning algorithms and their sensitivity to feature 

selection. The data was LiDAR-derived DTM and algorithms compared were SVM 

and RF. In this study, image segmentation centered on the automated selection of 

object features instead of object parameters. The object features were derived using 

LiDAR DTM and the feature selection drastically declined the number of object 

features and vaguely improved classification accuracy. Higher sensitivity was 

observed in OBIA towards feature selection than PBIA. The best landslide inventory 

map generated from this study achieved the highest accuracy of 89%.  
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Keyport (2018) also recommended a comparison based on unsupervised 

classification. The pixel-based classification was based on 11 trials whereas object-

based classification included 2-step K-means clustering. The study used orthophotos 

and DEM data for comparison. The pixel-based classification resulted in 11 output 

images, with clusters ranging from 4 to 14. The best object-based image approach 

was determined through trial and error. For this, only the orthophotos with spectral 

bands were implemented. The elimination of false-positive was conducted by prior 

knowledge on the region by fieldwork and spatial characteristics of the objects.  The 

overall accuracy of OBIA based on unsupervised classification was the highest 

96.5% whereas PBIA achieved 94.3% indicating the superiority of OBIA over 

PBIA. 

As previous studies indicated, the Object-based method provides superior 

quality landslide maps when compared to the Pixel-based approach. However, it 

comes at a cost of computational complexity and rigorous parameter optimization 

for each object. This results in the process being time-consuming when a quick 

assessment is required. Occasionally, the local authorities require instant results with 

an overall idea of severely impacted regions. Some research works favored the pixel-

based approach over the object one due to its rapid production of landslide maps. A 

study from Lei et. al. (2018) accentuated this and proposed a fuzzy-based change 

detection technique i.e., “Unsupervised Change Detection using Fast fuzzy c-means 

Clustering” (CDFFCM). The proposed technique involves two steps. The first step 

includes the execution of “Gaussian Pyramid-based Fast Fuzzy c-means” (FCM) to 

acquire the landslide region. Secondly, an image difference is based on structure 

information to obtain landslide regions more accurately. This method was compared 

with the likes of other unsupervised approaches such as “Edge-based Level-set” 

(ELSE), “Region-based Level-set” (RLSE), and “Change Detection-based Markov 
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Random Field” (CDMRF). The fuzzy-based techniques achieved the highest 

accuracy when compared to other aforementioned methods with fewer parameters, 

and shorter runtime.  

An additional study from Ramos-Bernal et. al. (2018) integrated “Change 

Vector Analysis” (CVA), “Chi-Square Transformation”, and “Linear Regression” 

(LR) along with the principal components from NDVI to acquire the differenced 

image. The thresholding was conducted through two histogram-based methods: the 

statistical parameters and the secant method. The proposed methodology was purely 

automated and required limited human interventions. The paper obtained the highest 

accuracy of 84.81% when NDVI was implemented with LR for landslide detection 

and thresholding by secant. 

However, many pieces of research adopted multi-temporal images that require 

tedious data collection and preprocessing which limits their usefulness during real-

time emergencies. A study from Zhai (2020) focused on developing an 

“Unsupervised Single Image-based Landslide Detection” (USILD) method for rapid 

and automated detection of landslides which can provide real-time updates to 

landslide responses. The proposed method takes advantage of the visual saliency and 

reflectance characteristics of landslides. The final risk map was refined using 

morphological operators. The experimental results reported that the adopted 

algorithm achieved the highest accuracy of 93.72% when compared to some of the 

widely used supervised and unsupervised approaches. The USILD was compared 

with the likes of “Image Difference-based Change Detection” (CDD), “Change 

Detection using Ratio” (CDR), K-means, and SVM. The proposed method requires 

no training samples and comes with a lower computational cost. 

Taiwan is one of those countries that is regularly distressed by landslides due 

to several factors. Such geohazard in Taiwan mainly occurs due to geologic 
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excitation during earthquakes or volcanic events, or sometimes induced due to heavy 

torrential rainfalls during typhoons that suddenly increases the accumulated water 

over the top surface and groundwater to a critical level that ultimately destabilizes 

the slopes. Hence, the majority of research works in Taiwan solely focused on 

locating landslide terrains and developing early warning systems based on their 

contributing factors using a pixel-based approach for its quick and reduced 

complexity. A study from Tsai (2010) detected landslides induced by extreme 

rainfall during Typhoon Morakot on 8th August 2009. These landslides resulted in 

sediment flow with enormous volume that instigated devastating damages to 

property and infrastructure causing heavy human casualties in southern Taiwan. A 

systematic approach utilizing multi-temporal satellite imagery with spectral indices 

filtering and geo-spatial analysis was proposed for accurate post-disaster assessment. 

Specifically, landslides were located with “NDVI filtering”, “Change Vector 

Analysis” (CVA), and “Post-analysis Editing”. A spatial analysis was conducted to 

develop a relationship between the identified landslides and topographic factors. 

This study identified a total of 9333 landslides constituting an area of 22,590 ha. 

Larger sections of the detected landslides were less than 10 ha. A total of 45% of the 

detected landslides were larger than 10 ha and the spatial analysis discovered the 

elevation range between 500 m to 2000 m and slope gradient was within 20° and 

40°. Additionally, a specific landslide that devastated a river-side village was also 

examined. The average debris flow of this landslide was estimated to be higher than 

2.6 million m3 with an average depth of 40m. 

Another severe landslide that devastated Taiwan was induced due to an 

earthquake on 21st September 1999 (921 or Chi-Chi). The landslide imposed severe 

destructions to natural habitat, infrastructure, and caused a higher death toll. This 

natural hazard particularly affected the central part of Taiwan. Landslide assessment 
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on Shei Pa National Park which was also one of the affected regions and a victim to 

strong ground movement from the Chi-Chi earthquake was in the progress of 

recovering. However, the restoration process was severely obstructed when 

Typhoon Toraji hit central Taiwan. Research from Wan et. al. (2010) provided a 

detailed landslide assessment in this area. The study utilized DEMs, and SPOT 

images to investigate several conditional factors and proposed a data mining 

technique i.e., “Discrete Rough Set” (DRS) to be compared with the C4.5 decision 

tree model. The study found the DRS method to be a superior classifier than a 

conventional C4.5 decision tree. The core attributes for landslide occurrence were 

Vegetation index (VI) and NDVI during the observation period indicating vegetation 

condition as the major governing factor for landslides in the Shei-Pa area.     

The mountainous region of Chiufenershan in Central Taiwan was also 

severely damaged by the Chi-Chi earthquake and induced several largescale 

landslides. A detailed landslide survey of the area was adopted by Lin et. al. (2008) 

revealed that the estimated landslide area was 215.68 ha soon after the earthquake. 

The study was conducted through multi-temporal SPOT satellite images which were 

dated between 1999 to 2006 coupled with “Self-Organizing Map” (SOM) a type of 

unsupervised neural network, terrain analysis, and a “Universal Soil Loss Equation” 

(USLE) to indicate landslide patches. This study also proposed a new spectral index 

i.e., Total Brightness Index (TBI) as an alternative for NDVI. Till 2006, the patch 

area reduced to 113.96 ha indicating a 47.44% of the total landslides have recovered. 

According to terrain analysis of the denudation sites, debris volume was estimated 

to be 31,896,667 m3 and 39,537,067 m3 at collapsed and deposited sites, 

respectively. The erosion depth annually just after the earthquake was 22.07 mm 

which was about 3.59 times pre-earthquake. As a result of landslide restoration, the 

annual erosion was declined to 13.54 mm of about 2.21 times pre-earthquake. The 
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obtained result from this study indicated the efficacy of nature itself to handle 

ecological restoration without any human interventions. 

Mt Jou-Jou another gravely damaged mountainous terrain from the Chi-Chi 

earthquake was extensively monitored for its vegetation restoration. Several studies 

evaluated and monitored vegetation recovery rate post-earthquake on a short-term 

and long-term basis. For this, the local government authorities reserved a small 

portion of the mountain as a reservation park following the earthquake. A series of 

literature is available on the restoration process of Mt Jou-Jou. Lin et. al. (2004) 

developed a “Vegetation Restoration Rate” (C) to monitor vegetation succession one 

year after the earthquake. The landslide characteristics were studied through 

integrating NDVI with multi-temporal SPOT images that were coupled with GIS, 

aerial images, and in-situ field investigations. The estimated restored region to be 

73.35% of the total area with an annual recovery rate of 47.1% indicating about half 

of the landslide sites have been restored after one year. The research also designated 

poor to very poorly recovered regions to be mountain ridges, scoured slope bases, 

and acidic sulfate soil areas due to the effects from soil moisture and SO4
2-. The 

distribution of landslides covered a total of 908.96 ha over the entire mountain range 

was illustrated clearly in this research.  

Another study from Lin (2006) assessed vegetation and computed soil erosion 

after six years following the Chi-Chi earthquake. This study also utilized NDVI 

derived from multi-temporal SPOT satellite imagery. After six years since the 

earthquake, the denudation area reduced to 143.22 ha indicating that the majority of 

the landslides have been recovered. The vegetation percentage over landslide area 

reached 89.69% showing a significant vegetation improvement over the previous 

study. The soil erosion depth during the initial stages of the earthquake was 6.04 

mm, about 2.26 times pre-quake. However, the field surveys showed the formation 
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of vegetation buffer strips by several pioneer plant species to mitigate the impacts of 

debris flow and soil erosion. The annual soil erosion depth reduced by 47.48% about 

1.18 times pre-quake and was estimated to be 3.16 mm on average. 

However, previous studies were disputed by the research from Yang (2017) 

based on limited satellite image usage that could severely delude the statistical 

regression model and no consideration of seasonal variation on vegetation recovery. 

As the projected recovery rate from Lin et. al. (2004) and Lin et al. (2006) were 

based on short-term observation these research works could not provide sufficient 

information on the long-term trajectory. Hence, a total of 14 SPOT satellite images 

from 1999 through 2011 were utilized to derive a long-term trajectory for vegetation 

recovery over Mt Jou-Jou. The study comprehensively integrated multi-sensor 

satellite images from SPOT 1, 2, and 4. During the course of 12-year vegetation 

succession, the average NDVI for total area and the landslide areas rose from 0.278 

to 0.431 and -0.044 to 0.367, respectively. Two separate “Vegetation Recovery 

Rate” (VRR) models were proposed: one being the original VRR and another was a 

modified-VRR with seasonal adjustment. The modified-VRR approached a value of 

81.5% and 81.3% for total and landslide area, respectively. The regression model 

for modified-VRR on total area achieved an R2 value of 0.915 which was a 

significant increase over the traditional VRR having an R2 value of 0.584. As for the 

landslide area, the R2 value showed an improvement from 0.883 to 0.916 with the 

seasonal adjustment that recommends its significance in vegetation recovery 

assessment.  

The cited literature in this section emphasized the contribution of image 

analysis techniques in the field of landslide detection. However, both approaches 

yielded better accuracy than the other in some of the studies their applicability is 

solely a case-by-case phenomenon. OBIA requires rigorous parameter optimization 
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and heavily depends on similarity within the object which is time-consuming, and 

complex. PBIA is fast and efficient which requires no prior optimization and can 

configure quick, efficient, and automated landslide detection systems. However, the 

accuracy based on it highly depends on several factors such as orthorectification, 

and co-registration, it is also very sensitive to noise and outliers in the pixel values. 

Hence, with proper necessary preprocessing methods when an emergency quick 

response system post geohazard is to be developed most studies adopted PBIA 

whereas a detailed analysis on triggering factors was based after segmenting (OBIA) 

the initial raw images. 

The development of landslide detection along with its contribution towards 

landslide analysis has been thoroughly discussed with the necessary background and 

relevant literature survey. Each of the core elements such as appropriate feature 

analysis, image analysis, and data mining techniques have significantly contributed 

to providing robust and efficient geohazard monitoring systems. The landslide 

inventory has also provided ample information on historical landslides that could 

further the advancements in landslide prediction systems. The reviewed literature in 

this chapter indicated that the slope was the most prominent factor for inducing 

landslides on mountainous terrains with steeper gradients. Other factors instigating 

instability on slopes were reduced vegetation presence and improper drainage. A 

proper drainage system on slopes is crucial to prevent rainfall-induced landslides. 

The study from Pradhan et. al. (2020) demonstrated it by developing a susceptibility 

model for rainfall-induced landslides. The mitigation strategies for these landslides 

may include the construction of adequate drainage channels to drain excess water 

accumulated on slopes. However, slope destabilization does not only occur during 

rainfalls but also through landscape excitation during the earthquake or volcanic 

outburst. Hence, proper precautions shall be taken to stabilize these slopes during 
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such calamities. This can be accomplished through the construction of retaining 

walls, or earth anchors. Although, these structures can be costly if the slope gradient 

is higher or the slope is near a man-made structure such as roads, highways, bridges, 

etc. Hence, establishing an adequate vegetation buffer strip to stabilize these slopes 

would be a cost-effective and eco-friendly solution that provides dual benefits of 

preventing landslides from earth excitation or torrential rainfalls. On this basis, the 

literature from Taiwan primarily focused on monitoring vegetation restoration 

following some of the devastating calamities of the decade this country has ever 

faced. Each of these studies solely focused on providing a fair share of information 

on vegetation conditions from pre-slide and post-slide dated satellite imagery which 

is an economical source of data. Usage of multi-temporal remote sensing images 

significantly reduced the field surveys and provided sufficient knowledge within a 

limited timeframe which resulted in quicker response to the natural calamities. These 

studies aided local government authorities and ecological engineers alike to improve 

and develop genuine mitigation strategies for landslide restoration based on 

vegetation. Studies on Mt Jou-Jou, Taiwan mainly focused on implementing pixel-

based change detection using image differencing to locate landslide areas illustrating 

potential integration and assessment on data mining algorithms for this region. 

2.3 Literature on Other Data Mining Algorithms 

 

Some of the algorithms adopted for this research such as Minibatch K-means, 

BIRCH, Extra Trees (ET) are not widely adopted in landslide studies. In this section, 

we reviewed a handful of research works on their applications with remote sensing 

or other general purposes to gain a sense of their applicability. Moreover, additional 

literature on GMM is also reviewed as its adoption was quite limited in landslide 

studies and to draw out its theoretical background for this research which was not 

properly discussed in the previous sections. 
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Ari & Aksoy (2010) proposed a “Particle Swarm Optimization” (PSO) for 

parametrization in GMM algorithm which conventionally uses “Expectation-

Maximization” (EM) as the standard algorithm for parameter estimation. This study 

highlighted the problems associated with EM getting trapped in local-maxima and 

suggested the PSO algorithm for faster convergence. The quantitative results showed 

that PSO-based GMM achieved accuracy in 60 iterations closer to its EM-based 

counterpart which took 500 iterations to achieve the best results. 

Li & Fowler (2013) investigated the feasibility of GMM and “Markov 

Random Fields” (MRF) for classifying hyperspectral images. Due to large-scale 

parameter space in the GMM algorithm, its adoption has been significantly reduced 

with hyperspectral image data. This issue was countered by dimensionally reducing 

the data by two techniques with the preservation of multimodal structures. The input 

data for the GMM model consisted of spatial information from MRF. The 

experimental results demonstrated superior results from the proposed methodology 

and yielded the highest accuracy of 94.96%. 

Hsu et. al. (2017) proposed a CNN-based joint clustering technique for 

partitioning large-scale datasets. The technique proposed to utilize a pre-trained 

CNN model to extract the initial cluster. The Minibatch K-means algorithm was 

deployed to assign a cluster to each subset (mini-batch) of the image where the CNN 

model subsequently optimizes all parameters iteratively through “Stochastic 

Gradient Descent”. The proposed algorithm exceeds some of the widely adopted 

clustering techniques for large image-scale datasets containing millions of images. 

Tan (2019) proposed an “Object-based approach for Automatic Change 

Detection using Multiple Classifiers and Multi-scale Uncertainty Analysis” (OB-

MMUA). The study proposed to fuse SVM, K-Nearest Neighbor, and Extra Trees 

(ET) as the base classifiers using “Dempster Shafer theory” (DST). The input data 
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contained features from “Gray-Level Co-occurrence Matrix” (GLCM), morphology, 

and “Gabor Filter Texture” along with spectral information. The initial training 

sample was acquired using CVA-based uncertainty analysis. The optimal feature 

vectors were determined using the RF model. Hence, the object-based DST fusion 

and uncertainty analysis were integrated to classify the differenced image. The 

quantitative evaluation established the superiority of the proposed methodology for 

change detection which achieved the highest overall accuracy of 96.98% and 93.1% 

on ZY-3, and GF-2 satellite datasets, respectively.  

Hardy (2019) utilized the Extra Trees Classifier for mapping mosquito 

breeding habitats by automatically detecting the open and vegetated water bodies. 

The study employed Sentinel-1 satellite imagery in Western Zambia and integrated 

radar satellite with machine learning as a potential element for disease elimination 

campaigns. This research emphasized the importance of detecting vegetated water 

bodies that provide an adequate environment and refuge to mosquito species where 

aquatic life is limited. The proposed methodology achieved an overall accuracy of 

92% indicating its significance towards disease prevention programs in Africa.  

Sathiaraj (2019) predicted climate types using clustering algorithms in the 

United States. The study adopted K-means, BIRCH, and DBSCAN for comparison 

and included daily climate data measurement for temperature over the period 

between 1946 to 2015. The K-means and BIRCH algorithm provided high-quality 

clustering solutions whereas DBSCAN failed in effective clustering partly due to its 

weakness in scaling high-dimensional datasets. 

Reddy et. al. (2020) adopted the Minibatch K-means algorithm to classify 

hyperspectral remote sensing images and compared them with K-means, and 

“Density-based Spatial Clustering of Applications with Noise” (DBSCAN). In this 
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study, the K-means algorithm appeared to be superior and better for hyperspectral 

imaging data.           

Ren (2020) focused on comparing strategies to reduce the dimension of 

hyperspectral images and their subsequent partition. For this, the study adopted 

“Principal Component Analysis” (PCA), and the “original Relief-F” for 

dimensionality reduction. Furthermore, the dimensionally reduced image was 

partitioned using K-means and BIRCH which were subsequently compared with the 

adopted “Partitioned Relief-F” method. The research was conducted over three 

different datasets and the proposed technique achieved superior classification 

results. 

Cintia et. al. (2020) developed a movie recommendation system based on 

unsupervised clustering algorithms. Nine algorithms such as “K-means”, “BIRCH”, 

“Minibatch K-means”, “Mean-Shift”, “Affinity Propagation”, “Agglomerative 

Clustering”, and “Spectral Clustering” were compared. The comprehensive 

comparison of these algorithms revealed that the BIRCH algorithm yielded the 

lowest mean square error and was regarded as the best method.  

The cited literature and survey process indicated that statistical, and deep 

learning models such as SVM, RF, and CNN were widely popular and largely 

adopted for landslide detection. Decision trees and Sequential tree-based ensembled 

boosting algorithms such as XGBoost and GBM were popular among landslide 

susceptibility mapping. Unsupervised clustering algorithm such as K-means was 

widely adopted as a comparison benchmarking tool for showing the superiority of 

the proposed corresponding automated methodology. Other unsupervised 

algorithms such as BIRCH and Minibatch K-means were not at all applied on 

landslide studies and only integrated for other purposes with remote sensing data. 

These algorithms exhibited exceptional accuracy and performance proclaiming their 
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robustness. Similarly, the GMM algorithm also had very limited applications on 

landslide identification, and other studies only focused on its potential optimizations. 
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Chapter 3 Research Materials & Methodology 

 

3.1 Study Area 

 

Mt Jou-Jou is situated near the northern shore of Wu-Chi River in Nantou 

County, Taiwan having 4396 ha of watershed area, and the altitude ranges between 

123 and 776 m (Lin et al., 2006). The geographic location of Mt Jou-Jou in Taiwan 

is shown in Figure 3.1. The surface on the upper layer of Mt Jou-Jou is mainly 

categorized by Pliocene-Pleistocene Tokazan beds. The slopes vary between 50° and 

85° from which almost half of the slopes lie within 60° to 70° (Yang et al., 2017). 

The gravel layer in this region has very high hydraulic conductivity with a thickness 

of 1000 m. Sometimes, high consolidation occurs in this layer causing it to harden 

during dry conditions. The surface geology allows the formation of several deep 

gullies on Mt Jou-Jou due to its higher erosion into deep layers throughout the rainy 

season, as the gravel hardens during dry conditions the surface becomes rougher 

(Lin et al., 2004; Lin, 2006; Yang et al., 2017). Mt Jou-Jou strongly comprises of 

geologic Tokazan formation, which mainly composed of three layers where the 

upper layer is made of bulky rock gravels, the middle layer is an assembly of clayey 

sand with gravel interbed, and finally, the lower layer that constitutes sand and shale 

with a thin interbed made of gravel (Yang et al., 2017). Mt Jou-Jou experiences 

precipitation of 1800 mm annually with an uneven spatial and temporal distribution 

(Yang et al., 2017). After the Chi-Chi earthquake, a five-year plan for an in-situ 

rainfall precipitation monitoring program was proposed. During the rainy season 

(April-September) 80.2% of the rainfall occurs, while the remaining 19.8% happens 

throughout the drier season (October-March) (Yang et al., 2017). Mt Jou-Jou 

tolerated shallow failures periodically due to high and short rainfalls including a few 

of the ground shaking events. The vegetation in cliff areas is mainly composed of 

“Formosan giantreed”, “Arundo Formosana”. The “Taiwan Red Pine”, “Pinus 
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Taiwanensis Hay”, “Taiwan Short Leaf Pine” and “Pinus Morrisonicola Hay” are 

the dominant species of trees found in moderately sloped land and hillside bases (Lin 

et al., 2004; Lin et al., 2006). Mt Jou-Jou is also composed of other woody plant 

species such as “Trema Orientalis”, “Ficus Erecta Thunb”, “Koelreuteria henryi 

Dumm” and “Cyclobalanopsis galuca” (Yang et al., 2017). In response to this 

catastrophic disaster in Central Taiwan, the Council of Agriculture in Taiwan 

decided to retain an area of 1198 ha for nature conservation purposes. Under the 

Taiwan Cultural Heritage Protection Law, the landslide area was maintained as a 

reservation park and adopted for studies related to vegetation recovery assessment. 

 

 

 

 

Figure 3.1: Mt Jou-Jou in Central Taiwan 
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3.2 Landslide Identification in Mt Jou-Jou, Central Taiwan 

 

As discussed earlier, this research proposes a comparison of nine Landslide 

Inventory Maps obtained from four unsupervised and five supervised algorithms. 

The proposed methodology was divided into six steps: 

(a) Remote sensing satellite image acquisition from pre-quake and post-quake 

dates along with its preprocessing.  

(b) Input features such as Normalized Difference Vegetation Index (NDVI) and 

Total Brightness Index (TBI) were calculated, differenced, and stacked 

together in a same data frame from pre-processed multi-temporal images.  

(c) Extraction and pre-processing of training, and testing set from satellite 

imagery in each category i.e., Landslide (L) and Non-Landslide (NL). 

(d) Training & testing of the supervised algorithms based on hyperparameter 

tuning along with monitoring for overfitting and underfitting. 

(e) Landslide Inventory Map generation from trained supervised models as well 

as unsupervised clustering algorithms. 

(f) Quantitative accuracy assessment and comparison of all acquired landslide 

maps based on a validation set with accurate ground truth. 

Subsequently, a detailed discussion on each step for the proposed 

methodology has been given in the following sections. A detailed workflow diagram 

of the adopted methodology is demonstrated in Figure 3.2.    
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Multi-Temporal SPOT Image 
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Layer Stacking: 

NDVI/TBI 
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Figure 3.2: Schematic Framework of the Proposed Methodology 

Unsupervised Approach 



  

35 

 

3.3 Remote Sensing Data and Feature Extraction 

 

Data extracted from remotely sensed multi-temporal satellite imagery has 

greatly contributed to monitoring natural hazards and natural resource management. 

Images from the SPOT-2 satellite were acquired over the entire study region. The 

image acquired on 1st April 1999 represents the pre-earthquake condition, while the 

image dated 27th September 1999 represents immediate post-earthquake conditions, 

shown in Figure 3.3. The SPOT satellite imagery mainly consists of 3-bands, green 

(G), red (R), and near-infrared (NIR). Each pixel is sized 12.5 x 12.5 (m) and the 

image contains a total of 500 x 558 pixels covering the entire study area. The 

reflected wavebands underwent two corrections, haze correction followed by noise 

correction. Both corrections were implemented using high-caliber geospatial 

software. Due to atmospheric effects at the time of image acquisition, the image may 

have a limited dynamic range causing image appearance with very low contrast and 

high haziness. Haze correction consists of two techniques “Tasseled Cap 

Transformations” or “Point Spread Convolution”. This technique yields components 

that correlate with haziness. The method removes this component and the image is 

transformed back to RGB space. In this study, the Point Spread Convolution 

technique was utilized to remove the effect of haziness on the image. Noise 

correction removes the portion of noise in the raster layer that preserves the finer 

details in the satellite image such as thin lines while removing noise along the edges 

and flat areas. 

Two spectral indices are stacked together as input layers for these algorithms. 

Firstly, the Normalized Difference Vegetation Index (NDVI) was proposed to 

evaluate the extent and localization of vegetation in the study area. The 

characteristics of the chlorophyll imply that red wavelength has high absorption 

whereas infrared waveband has a high reflectance. This indicates that spectral 
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response from vegetation can be measured by reflected red over infrared wavelength 

(Yang et al., 2017). NDVI is one of the most favored and versatile vegetation indices 

for vegetation monitoring (Lin et al., 2006). The NDVI (Lin et al., 2004; Lin, 2006; 

Yang et al., 2017) can be calculated as: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
   …... (1) 

Where NIR is the reflectance of the infrared wavelength and RED is the reflectance 

of the red wavelength. The NDVI value ranges between -1 and 1.  

A high NDVI value indicates that the area consists of very high or dense 

vegetation whereas a low NDVI value indicates bare soil, denudation area, or even 

landslide. These characteristics were utilized to investigate the drastic change in 

vegetation from pre-earthquake and post-earthquake images to identify the location 

of landslide-affected regions. NDVI was adopted as a vegetation indicator for post-

disaster landslide assessment in southern Taiwan due to Typhoon Morakot (Tsai et 

al., 2010). Recently, NDVI derived from various remote sensing satellite images 

have been coupled with several topographic features extracted from DEM, rainfall 

data, geological data (lithology), hydrological data for landslide detection, and 

susceptibility mapping in the high mountainous regions (Wan et al., 2010; Bernal et 

al., 2018; Tavakkoli, 2019; Nhu, 2020; Sahin et al., 2020).  

Another evaluating index was fused with the spectral vegetation index as input 

layer i.e., Total Brightness Index (TBI) (Lin et al., 2008). TBI was implemented to 

enhance the spectral feature of the landslide and was proposed as a substitute for 

near-infrared reflectance. The index is computed by the following expression: 

𝑇𝐵𝐼 =
𝐺+𝑅+𝑁𝐼𝑅

3
   ...... (2) 
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In which G is the green band reflectance, R represents the reflectance in the 

red wavelength, whereas, NIR is the reflectance for the near-infrared band. The 

proposed TBI displayed strong reflectance and enhancement on the landslide region. 

Therefore, landslides can be extracted by utilizing the brightness values from G, R, 

and NIR. TBI was adopted as an evaluating factor for landslide extraction from 

multi-temporal SPOT images in Chiufenershan which was also severely affected by 

the landslides induced due to the Chi-Chi earthquake (Lin et al., 2008). 

In this study, both NDVI and TBI derived from SPOT satellite images 

acquired from pre-earthquake and post-earthquake images were differenced for each 

value pixel-by-pixel by “Image Differencing” which is also known as “Change 

Detection using Image Differencing” (CDD) (Zhai et al., 2020). The process is 

simple, it includes standard subtraction of digital values of each pixel from a pair of 

given images and produces a third image consisting of numerical difference between 

pair of pixels corresponding to the same coordinates (Lin et al., 2008). Landslides 

are one of the land covers that changed between the multi-temporal SPOT images, 

which can be extracted using CDD. The differenced images of NDVI and TBI are 

shown in Figure 3.4. It is apparent from the differenced images that NDVI and TBI 

develop an inverse relationship for the landslide region. The NDVI changed 

negatively whereas TBI underwent a positive change for the area experiencing a 

drastic reduction in vegetation. If the NDVI changed positively, and TBI had a 

negative change then the area witnessed improved vegetation condition. If very little 

change was observed between NDVI and TBI values, then the region did not go any 

major changes in its land cover class and is assumed to have unaffected by the natural 

hazard. 
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Figure 3.3:  Multi-temporal SPOT Images of Mt Jou-Jou (a) 1st April 1999 

(b) 27th September 1999 

Figure 3.4: Differenced Images (a) NDVI (b) TBI 

 

(a) (b) 

(a) (b) 
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3.4 Database Extraction and Preprocessing for Landslide Detection 

 

Establishing a robust database is critical for data mining models, that include 

three components: layer stacking, data extraction, and database establishment (Wang 

et al., 2020). In this study, layer stacking involves a simple fusion of two feature 

variables side-by-side together in a single database i.e., NDVI and TBI. Data 

extraction includes a careful selection of representative pixels for each category, this 

was conducted by the user’s prior knowledge and cited literatures of the study area. 

The area of interest (AOI) feature represented by polygons was utilized to highlight 

and extract the coordinates of the representative pixels in each category as shown in 

Figure 3.5. The pixels were binary encoded into non-landslide [1,0] and [0,1] 

landslide region.  

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Figure 3.5: Representative Sites for Training the Supervised Learning 

Algorithms (a) Non-Landslides (b) Landslides 
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An intelligent and efficient system requires a comprehensive dataset 

(Alkhasawneh et al., 2014). Hence, 12316 pixels were extracted for this study, of 

which 3300 pixels represented landslide (L) and 9016 pixels represented non-

landslide (NL). The dataset was proposed to split into two sets, a training set, and a 

testing set. The training set contains 25% of the whole dataset which was used to 

train the supervised models, whereas the rest 75% of the dataset was defined as the 

testing set to evaluate the classification accuracy of the trained model. The resulting 

dataset was highly imbalanced with landslide pixels being in the minority class, 

which were balanced by an over-sampling technique known as “Synthetic Minority 

Oversampling Technique” (SMOTE). 

A frequent impediment for machine learning in Landslide Inventory Map 

development is the class imbalance (Ma et al., 2020). Most of the machine learning 

algorithms require extracting specific features related to non-landslide and landslide 

regions, to describe a clear classification boundary between the two categories (i.e., 

non-landslide and landslide). In this study, the landslide regions appear to have fewer 

pixels compared to the non-landslide region. Such conditional imbalance can cause 

the trained model to be biased towards the majority class and causing the 

misclassification of landslides into a non-landslide. After an investigation by Ma 

(2020), it was found that the RF model under-classified landslide region when data 

samples were highly imbalanced i.e., the dataset contained more pixels for non-

landslide areas. For overcoming such problems, several techniques can be employed 

which are divided into 3 categories as Data-level, Algorithm-level, and Hybrid 

approaches (Ma et al., 2020). Data-level techniques mitigate class imbalance 

through diverse data resampling, algorithm-level techniques involve cost-sensitive 

approaches to solve class imbalance which includes modifying the algorithms 

themselves by the class penalty or class weights. Hybrid approaches are strategic 
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combinations of data level and algorithm level techniques. In a recent study, it was 

indicated that both instances, synthetic and original, were correctly classified by the 

RF classifier after preprocessing the data by adopting minority oversampling 

technique with iterative partitioning filter i.e., “SMOTE-IPF” (Synthetic Minority 

Oversampling Technique- Iterative Partitioning Filter) which is a type of data level 

technique (Ma et al., 2020). 

For the present dataset, the minority class was landslides with 3300 pixels 

compared to 9016 pixels in non-landslide. Following the split, total pixels in the 

training set were 3079 which included, 781 samples as landslides and 2298 samples 

in non-landslide. The test set includes 9237 samples, in which 2519 samples were 

landslide and 6718 were non-landslide resulting in a highly imbalanced dataset and 

would likely result in supervised learning biased towards non-landslide with under-

classification of landslides generating landslide map with diminished accuracy.   

Hence, this study adopted a data level oversampling technique called 

“Synthetic Minority Oversampling Technique” (SMOTE) to eliminate the 

imbalance in the dataset. This approach utilizes the K-nearest neighbor to generate 

new instances of the minority class. It involves the selection of an instance “a” 

randomly in minority class while its K nearest minority class neighbors is 

determined. The synthetic instant is then generated by random selection from one of 

the K nearest neighbors “b” followed by adjoining “a” and “b” through a line 

segment in the feature space. The synthetic instances are synthesized by a convex 

combination of random instances “a” and “b”. This technique was implemented 

using “Imbalanced-learn”, an open-source sampling library for python programming 

language. All the parameters in this package were kept at default while oversampling 

the training and testing dataset. 
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Both input layers (NDVI and TBI) were first randomly shuffled and then 

oversampled followed by rescaling in the range of 0 to 1 by a technique known as 

“Data Normalization”. It was employed using the function “Normalizer” in the 

“preprocessing” module of the “scikit-learn” open-source library for python. 

General mathematical expressions (Tan et al., 2019) of normalization for both 

features are given in equations (3) and (4). 

𝑁𝐷𝑉𝐼𝑛𝑜𝑟𝑚  =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
   …… (3) 

𝑇𝐵𝐼𝑛𝑜𝑟𝑚  =
𝑇𝐵𝐼−𝑇𝐵𝐼𝑚𝑖𝑛

𝑇𝐵𝐼𝑚𝑎𝑥− 𝑇𝐵𝐼𝑚𝑖𝑛
   …… (4) 

Where, 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  and 𝑇𝐵𝐼𝑚𝑖𝑛  are the minimum values of NDVI and TBI, 

respectively and correspondingly 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 and 𝑇𝐵𝐼𝑚𝑎𝑥 are the maximum values. 

3.5 Data Mining Techniques 

3.5.1 Supervised Approach 

 

This approach requires pre-specified labeled data to build a model and 

develop predictive systems. The prediction accuracy for this approach is highly 

dependent on the parameter tuning, nature, size, and type of labeled data. Some of 

the algorithms in this approach are highly sensitive to noise, outliers as well as class 

imbalance. However, several data pre-processing techniques, as well as in-built 

features in some algorithms have been developed to reduce the sensitivity to these 

abnormalities in a given dataset. For the past few years, the supervised machine 

learning algorithms greatly contributed and showed promising results on remote 

sensing data. As per the literature review, these algorithms have been successfully 

combined with high-resolution spectral images derived from a variety of satellite 

remote sensors. Supervised learning algorithms consist of two broad categories: (1) 

machine learning, and (2) deep learning algorithms. Machine learning algorithms 
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parse the data, develops a decision boundary while training, and does prediction, 

whereas deep learning algorithms have brain-like logical structures in layers known 

as “Neural Networks” which can make much more intelligent decisions on their 

own. Widely used deep learning algorithms are “Artificial Neural Network” (ANN), 

“Convolution Neural Network” (CNN), “Deep Neural network” (DNN). The 

literature review indicated that recent researches mostly considered “Support Vector 

Machines” (SVM), and “Random Forest” (RF), which comes under the machine 

learning category for predictive modeling of landslide detection, as well as deep 

learning algorithms such as ANN, DNN and CNN have also significantly 

contributed to this field. All the algorithms adopted in this study are implemented 

through the open-source library i.e., “scikit-learn” for python programming. 

3.5.1.1 Support Vector Machines (SVM) 

 

SVM is a kernel-based non-parametric statistical algorithm that transforms 

the given data into a higher dimension to develop a hyperplane that consists of a 

non-linear decision boundary for classification. SVM has been widely applied and 

contributed to several landslide studies (Li et al., 2015; Pradhan et al., 2018; 

Ghorbanzadeh, 2019; Tan, 2019; Ma et al., 2020; Wang et al., 2020) due to its 

reduced dependency on a large dataset and less training time. SVM is considered to 

be highly adaptable and provides good performance under various settings (Wang et 

al., 2020). The technique by which SVM enlarges the feature space of the given data 

is called the “kernel trick”. Four available kernel functions can perform kernel trick 

such as linear (LF), radial basis (RBF), polynomial (PF), and sigmoid (SF) functions. 

The simplest kernel is LF, and only suitable when the observations are linearly 

related, RBF depends on the distance from the origin, PF is non-stationary and 

mostly suitable on normalized training data, and SF is based on neural networks 

(Pradhan et al., 2018).  
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After enlarging the feature space, the algorithm tries to determine an optimal 

hyperplane through maximization of safety margin from the nearest data points 

which are called “Support Vectors”. Such a hyperplane with maximized distance 

from support vectors is known as a “Maximum-Margin Hyperplane”. A traditional 

SVM model has been illustrated in Figure 3.6 This hyperplane is then utilized to 

classify features from an unknown dataset. The performance of SVM is highly 

dependent on its hyperparameters. In this study, the widely acclaimed RBF kernel 

was selected and three parameters were optimized to obtain the landslide inventory 

map: (1) cost penalty function (C) which contributes to margin maximization, (2) 

gamma (ϒ) indicates the curvature of the decision boundary, and tolerance (tol) is a 

stopping criterion. The general mathematical expression for RBF kernel function 

(Pradhan et al., 2018; Wang et al., 2020) is mentioned below: 

𝐾 (𝑥𝑖 , 𝑥𝑖′) = exp(−ϒ∑ (𝑥𝑖𝑗  −  𝑥𝑖′𝑗)
2𝑚

𝑗=1 )   …… (5) 

Where ϒ =  
1

2𝜎2
 …… (5a) 

𝑥𝑖𝑗 and 𝑥𝑖′𝑗 indicates the ith observation pair for jth predictor, m is the number of 

predictors, ϒ is the decision boundary smoothness, 𝜎 is the variance, and K denotes 

the kernel function. 
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3.5.1.2 Decision Tree (DT) 

 

A decision tree is an algorithm that is used to generate decision rules for 

classification and regression. The structural pattern of this algorithm is similar to 

tree structure which includes conditional criteria at each node for classification and 

regression problems. The decision tree is not sensitive to the relationship between 

all the input variables and the target variable (Alkhasawneh et al., 2014). It is a type 

of mapping algorithm that maps the rules and their conclusion to the target variable 

(Wan et al., 2010). The decision tree is not affected by input variables of different 

scales (Alkhasawneh et al., 2014), thus eliminating the step of data normalization 

from the data preprocessing. However, in this study, the decision tree was deployed 

on the normalized data for comparison. The primary objective of this algorithm is to 

X 

X
1
 

X
2
 Maximum-Margin 

Support Vectors 

Kernel Trick 

Figure 3.6: Representation of a Conventional SVM model 
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provide a concise and accurate representation of the relationship between the input 

variable and the target variable. Specifically, the decision tree can be easily 

visualized unlike “black box” algorithms such as neural networks. 

The decision tree is a multilevel hierarchical decision structure and it mainly 

comprises of a root node, a set of internal nodes or child nodes, and at last end-nodes 

or terminal nodes (leaves), as shown in Figure 3.7. Each node is required to make a 

binary decision that either classifies one class or some other classes from the 

remaining ones. The computation is continued until a terminal node is reached. The 

length from the root node to a terminal node indicates the total depth of the tree. The 

decision tree selects input features with maximum information for classification, 

rejecting other remaining features to improve computational efficiency and time. 

There are four types of decision tree algorithms: “Classification and Regression 

Tree” (CART), “Chi-square Automatic Interaction Detection” (CHAID), 

“exhaustive CHAID”, and “Quick, Unbiased, and Efficient Statistical Tree” 

(QUEST). Studies from Park (2018) and Alkhasawneh (2014) established a detailed 

comparative study of these algorithms for landslide detection and susceptibility 

mapping, respectively. 

For this study, the CART algorithm from the “scikit-learn” library was 

selected to generate a decision tree for landslide mapping. It is a repetitive 

segregation method and can be used for both classification and regression. The tree 

is generated by splitting subsamples to construct two child nodes from all predictors 

in a given dataset, starting with the entire dataset. The best predictor can be selected 

using various metrics such as Gini index, entropy, towing, ordered towing, least-

square deviation. In this study, both Gini index and entropy were chosen for this 

purpose while the best criterion was automatically selected during the parameter 

tuning process.  
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Entropy can be defined as the impurity in input data [6]. While information 

gain (decrease in entropy) is the difference between entropy and the additional 

information required for an attribute (feature) which is the weighted average of the 

entropy in the dataset following the split. The mathematical expression for entropy 

(E(D)), new information (Info(D)), and information gain (Gain(D)) was given by 

Pradhan et. al. (2018). Consider a dataset D= {d1, d2, d3, d4, …, dj}, the equation for 

entropy can be given by: 

𝐸(𝐷) =  − ∑ 𝑝𝑖 log2 𝑝𝑖
𝑛
𝑖=1  …… (6) 

Where, 𝑝𝑖  is the probability for a portion in the dataset (D) belonging to class i. 

While the new information with weighted entropy is as follows: 

𝐼𝑛𝑓𝑜(𝐷) = ∑
|𝑑𝑘|

|𝑑|
 ×  𝐸(𝐷𝑘)

𝑡
𝑘=1 …… (7)  

Root Node 

Internal Node 

Node 

Internal Node 

Terminal Node Internal Node 

Terminal Node Terminal Node 

Terminal Node Terminal Node 

Node 

Figure 3.7: Typical Decision Tree Structure 
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In which, k represents the subset in dataset D= {d1, d2, d3, …, dk} while, the |𝑑𝑘|/|𝑑| 

is the weightage of the kth partition. 𝐸(𝐷𝑘) is the entropy for the kth portion. 

Finally, the information gain is calculated by Eq. (8) 

𝐺𝑎𝑖𝑛(𝐷) = 𝐸(𝐷) − 𝐼𝑛𝑓𝑜(𝐷)…… (8) 

Attribute having the highest information gain value will be selected for the split at 

the node (N). 

Another, splitting criterion that is Gini index can also be implemented in the CART-

based decision tree algorithm. The expression for Gini index (G(D)) for a dataset D 

is given by Alkhasawneh et. al. (2014) and specified in Eq. (9): 

𝐺(𝐷) = 1 − ∑ 𝑝𝑖2𝑚
𝑗=1 …… (9) 

𝑝𝑖 is the probability of subset in D belongs to class i. The attribute with the lowest 

Gini index value is used for splitting the node (N) 

Five parameters were tuned for this algorithm: (1) “criterion” which measures 

the quality of split through a function, specified both Gini index and entropy, (2) 

“max_depth” where maximum depth of the tree is specified, (3) “max_leaf_nodes” 

which indicates the number of terminal nodes (leaves), (4) “min_samples_leaf” is 

the minimum data samples required at a leaf node, and (5) “min_samples_split” 

represents the number of samples required to split an internal node (6) “splitter” is 

the strategic choice for the split at each node (best or random), the optimal strategy 

for this research was “best” following the parameter tuning process. 
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3.5.1.3 Extra Trees Classifier (ET) 

 

Extremely randomized trees classifier also known as Extra Trees Classifiers 

are a tree-based ensembled technique that utilizes results from de-correlated multiple 

decision trees to give classification results. It is quite similar to Random Forest 

classifiers except for its method of generating decision trees. Unlike the Random 

Forest (RF), the entire training dataset is used to generate each decision tree and the 

split is randomized, hence, less computational. The square root of the total features 

is utilized to generate each tree. The node-splitting for each decision tree is 

performed by determining the split through random selection of the features based 

on mathematical criteria (typically Gini index or entropy). The random sampling of 

features leads to the generation of multiple de-correlated decision trees. The final 

classification result is based on weighted majority voting by aggregating results from 

all the constructed decision trees. A simple representation of an Extra Trees classifier 

is illustrated in Figure 3.8. From the cited research, the Extra Trees Classifier had a 

very limited application on remote sensing data. However, it has been applied as one 

of the base classifiers for “Object-based Automatic Change Detection using Multiple 

Classifiers and Multi-scale Uncertainty Analysis” on high-resolution remote sensing 

images (Tan et al., 2019). Also, it has been deployed for detecting the open and 

vegetated water bodies from Sentinel-1 satellite images for mapping the African 

malaria vector mosquito breeding habitats (Hardy et al., 2019).  

In this research, along with the five parameters mentioned earlier in section 

3.5.1.2, one more parameter was optimized i.e., “n_estimators”. This parameter 

represents the number of decision trees to be constructed for extra tree classification.  
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3.5.1.4 Random Forest Classifier (RF) 

 

Random Forest is a popular non-parametric, tree-based ensemble AI 

technique used for classification and regression problems. It has been widely 

deployed for the detection of landslides using remote sensing data (Chen et al., 2014; 

Training Set 

Random Split Selection (t) 

t1 t2 ………. tn 

Decision Tree-1 Decision Tree-2 Decision Tree-n 

Majority Voting 

Final Classification 

Figure 3.8: Representation of a Typical Extra Trees Classifier 
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Li, 2015; Pradhan, 2018; Ghorbanzadeh et al., 2019; Tavakkoli et al., 2019; Nhu, 

2020; Wang et al., 2020). It provides reliable performance on a large and complex 

dataset with low computational cost. One of the major advantages includes no 

requirement for the assumption of the statistical distribution of the dataset (Pradhan 

et al., 2020). It is a widely popular tool to identify hidden patterns within a large 

volume of the dataset (Chen et al., 2014). Similar to Extra Trees, this technique also 

generates several de-correlated decision trees. However, this algorithm develops 

decision trees through random sampling of a given dataset instead of using the entire 

dataset by a technique known as bootstrapping, also it only chooses optimal split 

which is a little computationally costlier than Extra Trees. This algorithm is also not 

allowed to utilize all input features instead considers a random subset of input feature 

i.e., the square root of the total features. This algorithm is quite popular due to its 

less sensitivity to over-fitting as well as an acceptable performance from fewer 

efforts on parameter tuning. Similarly, the best split at each node is based on the 

mathematical criteria i.e., Gini index or entropy. The final classification result is 

acquired based on the majority votes across all the decision trees, as depicted in 

Figure 3.9. The cited literature indicated that the random forest classifier achieved 

highly accurate results on image classification. Therefore, the random forest has 

been selected for comparison purposes in this study. 

Along with the aforementioned parameters in section 3.5.1.2 additional two 

parameters have been optimized for Random Forest i.e., the “n_estimators” that 

define the number of decision trees to be constructed, and “max_sample” which 

represents the fraction of samples to be utilized for constructing each decision tree. 
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3.5.1.5 Extreme Gradient Boosting (XGBoost) 

 

Another type of tree-based ensembled algorithm that constructs several weak 

learners, typically decision trees to assemble a powerful “committee”, hence, 

regarded as a strong classifier (Wang et al., 2020). The algorithm generates weak 

learners by a process known as boosting, which is referred to as the training of weak 

Training Set 

Bootstrapped Subsample (t) 

Decision Tree-1 Decision Tree-2 Decision Tree-n 

Majority Voting 

Final Classification 

t1 t2 ………. tn 

Figure 3.9: Typical Random Forest Classification 
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learners sequentially with each attempting to correct their predecessor (Ma et al., 

2020) through weighted outcomes of the previous learner. This algorithm utilizes a 

regularized model formulation to avoid over-fitting, has a built-in feature to handle 

missing values, and compute cross-validation scores. It is also highly customizable 

and allows users to specify suitable evaluation criteria for their model (high 

flexibility). There are several other variants available based on gradient boosting 

strategy such as Adaboost, LightGBM, Catboost, etc. The Adaboost and especially 

XGBoost are some of the prominent boosting algorithms and have significantly 

produced reliable results for landslide detection and susceptibility mapping (Pradhan 

et al., 2020; Sahin et al., 2020; Wang et al., 2020). The XGBoost algorithm 

efficiently reduces the processing time by performing both classification and 

regression problems on multi-cores, hence, relatively faster than other boosting 

variants. The gradient boosting method consists of three main components: (1) a loss 

function that requires optimization, (2) a weak learner for prediction, and (3) an 

additive model that combines the weak learners to optimize the loss function (Sahin 

et al., 2020).  

In this study, the XGBoost algorithm was chosen due to its wide adoption in 

past research works on landslides. The number of weak learners was mainly 

dependent on the Logarithmic Loss function (Log Loss), which penalizes inaccurate 

classification by considering its probability. The general expression for Log Loss 

function [32] is given in Eq (10):       

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 =  
1

𝑁
 ∑ [𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)]

𝑁
𝑖=1   …….. (10) 

N is the total number of samples, 𝑦𝑖  is the outcome of ith instance, and 𝑝𝑖  is the 

probability of the ith instance. Two evaluation metrics were monitored during the 

generation of weak learners: Classification Error, and Log Loss function. The 
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number of weak learners is generally referred to as epochs in this algorithm, which 

was given early stopping criteria if no reduction in Log Loss function was observed. 

A general description of the sequential tree construction based on boosting concept 

is given in Figure 3.10. 
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Figure 3.10: General Sequential Boosting Strategy for XGBoost  
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The XGBoost algorithm was implemented using an open-source code 

“xgboost” integrated with “scikit learn” API for python programming environment 

and was adjusted using nine parameters namely: (1) “booster” in which the method 

of boosting is specified, for this research “gbtree” was used for tree-based model, 

another option is “gblinear” for linear model, this parameter was not tuned, (2) 

“colsample_bytree” represents a portion of the columns to be randomly sampled for 

constructing one tree, (3) “gamma” is the minimum loss function for further 

partitioning of leaf node for the tree, (4) “eta” (learning rate) which is a step size 

shrinkage, after each step of boosting it shrinks the feature weights to make boosting 

more conservative, (5) “max_depth” which indicates the total depth of each tree, (6) 

“min_child_weight” defines the minimum sum of all weights required in a child 

node, (7) “reg_alpha” which is an L1 regularization, a coefficient of penalty term 

(absolute value) added in the loss function, (8) “reg_lambda” is the L2 regularization 

term, coefficient as a squared value is added to the loss function, (9) “subsample” 

indicates random sampling of training data before growing trees, and (10) 

“n_estimator” defines the number of maximum trees to be generated. 

3.5.1.6 Adopted Training & Testing Methodology 

 

The present study proposes to evaluate five supervised algorithms for 

landslide identification. Each algorithm was trained and tested on the pre-processed 

dataset as discussed in section 3.4. The performance or accuracy of the supervised 

learning algorithms significantly depends on the tuning of its parameters. This study 

adopts “GridsearchCV” from the “scikit-learn” library for python to determine the 

optimal values for each parameter. The predictive efficiency of these models was 

evaluated using various metrics such as “Test Accuracy” which gives an insight into 

the model’s efficiency in classifying the testing set, “Cross-Validation” which is a 

resampling technique used to evaluate these models, and “Root Mean Square Error” 
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(RMSE) is a measure of the difference between the prediction of the model and 

actual observation. If the difference between RMSE for the training set and testing 

set is too large then the model is badly fit on a given dataset. Similarly, the difference 

between Test Accuracy and the Cross-Validation also indicates the fitting condition 

i.e., overfit or underfit of the trained model. Each of these metrics is discussed in 

detail subsequently. For Extreme Gradient Boosting (XGBoost), two additional 

metrics were visualized to check the quality of fit by weak learners on the given 

training and testing sets i.e., Classification Error and Logarithmic Loss function (Log 

Loss) for each epoch. 

(1) Cross-Validation 

 

It is a statistical method for partitioning samples from a given data into several 

subsets that performs analysis on a single subset, while the remaining subsets are 

consequently reserved for the validation and confirmation of the initial analysis 

(Wan et al., 2010). This study adopts K-fold Cross-Validation for evaluating the 

actual dataset. Initially, the dataset was subsampled into K partitions, from which a 

single subsample is used as training data for training the model, while the remaining 

K - 1 subsamples are used for the testing. The cross-validation is repeated for K 

times (folds), where each of the K subsamples was used exactly once as training 

data. The mean of K-iteration scores can be used to determine the overall 

generalization of a model on the given dataset. For this study, the mean score from 

20 iterations (folds) was utilized to acquire the overall cross-validation score for each 

model. 
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(2) Root Mean Square Error (RMSE) 

 

It is the standard measure of predictive accuracy of a model in quantitative 

data. It is a measure of error between predicted data and observed data (Nhu et al., 

2020). It can be computed by Eq (11): 

𝑅𝑀𝑆𝐸 = √
1

𝑖
 ∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  − 𝑌𝑎𝑐𝑡𝑢𝑎𝑙)

2
 𝑖

𝑖−1    …… (11) 

Where i defines the total training & testing dataset, 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  and 𝑌𝑎𝑐𝑡𝑢𝑎𝑙 represent 

the predicted and actual label of the training & testing set, respectively. 

In this study, the root mean square error was calculated for both training and testing 

set to evaluate the fitting condition of the trained model. 

(3) Hyperparameter Tuning 

 

As mentioned earlier, the classification performance of the supervised 

learning algorithm is significantly dependent on the tuning of its parameter. 

GridsearchCV, which is a popular parameter tuning technique was utilized to tune 

each parameter of these models. It is a method of determining the optimal values for 

each parameter by looping over a grid of values specified by the user. This method 

investigates all the probable combinations from each parameter to obtain the best 

combination of optimal values. The parameters were tuned until the model satisfies 

the following criteria of each evaluation metrics specified in the previous sections: 

(a) The difference between Test Accuracy and Cross-Validation score can indicate 

whether the trained model is overfitting or underfitting. If the variation is too 

large i.e., Cross-Validation higher than Test accuracy then the model is said to 

be overfitting, and vice-versa for the underfitting. The parameters were tuned 

until the variance was minimal. 
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(b) The Root Mean Square Error (RMSE) also indicates the fitting condition of the 

proposed model. If the difference between the RMSE of the training set and the 

testing set is too large, it indicates the model cannot fit properly on the given 

dataset. Parameter tuning continued until a minimal difference was obtained. 

(c) For Extreme Gradient Boosting (XGBoost), the model was initially set to 

generate 1000 learners (epochs) with an early termination criterion, which was 

kept at 10 rounds indicating that the training process automatically terminates 

if no reduction was observed in the Log Loss function for the next 10 epochs. 

3.5.2 Unsupervised Approach 

 

In this modern era, the requirement of a rapid, robust, and efficient hazard 

assessment system is critical for emergency responses. As the name suggests, 

unsupervised algorithms do not require prior training or testing on a labeled dataset 

instead, quantifies the whole data into pre-defined clusters or classes with no prior 

human supervision. This fulfills the requirements of a rapid monitoring system post-

natural hazard. As discussion on the advantages of remote sensing data over 

traditional methods for hazard monitoring is rapidly increasing, some research works 

have successfully implemented unsupervised techniques with satellite images for 

landslide detection (Keyport et al., 2018; Lei, 2018; Ramos-Bernal, 2018; Tran et 

al., 2019; Zhai et al., 2020). This study proposed to evaluate four unsupervised 

algorithms, in which K-means, Minibatch K-means, BIRCH, and Gaussian Mixture 

Models (GMM) were used to generate topographic signatures of the landslides. Each 

of these algorithms is implemented through the open-source library “scikit-learn” 

for the python environment. Subsequently, each algorithm is discussed in detail.  
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3.5.2.1 K-means 

 

The K-means clustering algorithm is a partitioning-based clustering technique 

that is used for a variety of applications. There are successful implementations of K-

means with remote sensing images for landslide detection. Tran et. al. (2019) 

successfully derived landslide maps through K-means using airborne laser scanning 

data (LiDAR). Sathiaraj (2019) and Cintia (2020) indicated that it's crucial to select 

initial cluster centers to acquire high accuracy. K-means is employed on a wide 

variety of datasets for its simplicity, flexibility, and efficiency. A simple depiction 

of the clusters computed through K-means is illustrated in Figure 3.11. The K-means 

algorithm calculates clusters over several iterations. The iterations are continued 

until a clustering criterion is optimized. The sum of squared Euclidean distance is a 

commonly used criterion for this purpose. Given a dataset D = {d1, d2, ……, di}, 

where i is the number of points to be clustered into k clusters. Assuming cluster as 

C = {c1, c2, …..., ck}, the summation of squared Euclidean distance between points 

di is computed for the cluster centroid Ok of the subset ck, which contains di. This 

criterion is known as clustering error (E) and corresponds to cluster centroids O1, 

O2, …..., Ok (corresponds to pre-defined number of clusters). The mathematical 

expression for E (Sathiaraj et al., 2019) corresponding to each cluster ck is given by 

Eq (12): 

𝐸(𝑐𝑘) =  ∑ ||𝑑𝑖 − 𝑂𝑘||
2

𝑑𝑖 ∈ 𝑐𝑘    …….. (12) 

The algorithm focuses on minimizing the squared errors across all clusters. It 

is a type of iteration-based algorithm, that randomly selects initial clusters and 

iteratively reassigns cluster centers until the squared error between data points inside 

each cluster is minimal. As mentioned earlier, the main disadvantage of this 

algorithm is its dependency on the selection of the initial position of the clusters to 

acquire optimal results. For this research, the initial random positioning of clusters 
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was implemented through parameter “init” in which the method of initiation is 

specified. The initiation method specified was “k-means++” which speeds up the 

selection process of initial cluster centers in a smart way to speed up the 

convergence. In this study, 50 clusters were specified with max iterations of 100. 

 

 

 

 

 

 

 

 

 

 

3.5.2.2 Minibatch K-means 

 

A modified version of the K-means algorithm was developed i.e., Minibatch 

K-means, which reduces the time and complexity of large-scale calculations in huge 

datasets (Cintia et al., 2020). The reduction of inertia and the sum of squares within 

clusters are the primary goal of this algorithm (Vergunst, 2017). As per the cited 

literature, the application of Minibatch K-means is fairly limited with remote sensing 

data. Although, the algorithm was employed for clustering hyperspectral remote 

sensing images (Reddy et al., 2020), and also a CNN-based Minibatch K-means for 

Cluster 

Cluster Centroid 

Y-axis 

Figure 3.11: K-mean Clusters 

X-axis 
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joint clustering was proposed to represent large-scale image data (Hsu et al., 2017). 

The algorithm first divides the input data into various subsamples or mini-batches, 

that are individually used and significantly shortens the computation time (Vergunst, 

2017). In the first step, the subsamples are randomly chosen to generate mini-batches 

followed by allocation to the nearest centroid. The second step involves updating the 

centroids for all generated mini-batches based on clustering criterion which is 

squared Euclidean distance as discussed in section 3.5.2.1. Each centroid gets 

updated based on the streaming average of a specific batch used in that iteration 

(Vergunst, 2017). The algorithm iterates until convergence is achieved which can be 

the optimal clusters or the number of pre-specified iterations is reached. For a given 

dataset, D = {d1, d2, ……, di}, dN ∈ Rp,q, where dN indicates the network record of q-

dimensional real vectors, whereas p represents the number of data points inside the 

dataset D. The goal is to compute the set of cluster centers c ∈ Rp,q  to minimize the 

given dataset D of clusters c ∈ Rp,q in function. A general mathematical expression 

(Cintia et al., 2020) to compute the squared distance of one cluster is given by Eq 

(13): 

min∑ ||𝑓(𝐶, 𝑑) − 𝑑||
2

𝑑 ∈ 𝐷   ……. (13) 

Where 𝑓(𝐶, 𝑑) is the nearest cluster center c ∈ C for a datapoint d, and |C| = K, in 

which K is the required number of clusters. 

In this study, seven parameters were specified for Minibatch K-means i.e., the 

number of clusters is specified to be 50 (same as K-means), “init” was k-means++ 

which is a smart selection of initial cluster for fast convergence, maximum iteration 

was specified as 150, “max_no_improvement” is an early stopping control for the 

subsequent portion of mini-batches that do not yield any improvement, the specified 

value was 10, “tol” is another early stopping criteria based on changes to cluster 
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centers after each iteration, given value was 0.001, and “reassignment_ratio” which 

controls the fraction of the maximum number of counts for a center to be reassigned, 

given value was 0.1. These parameters were not optimized and were only assigned 

based on the user’s experience and knowledge. 

 

 

 

 

 

 

 

 

 

 

3.5.2.3 Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) 

 

BIRCH is a type of hierarchical clustering algorithm that skims the whole 

dataset and compacts or summarizes it assuming that not all the data points are 

important. The summarized dataset retains the original information as much as 

possible and generates an in-memory tree representation of the clusters (Sathiaraj et 

al., 2019). This algorithm is highly suitable for clustering large datasets similar to 

Minibatch K-means. The basic principle of this algorithm is to develop clustering 

features (CF) for each cluster and builds a tree representation known as CF-tree. For 
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Figure 3.12: Clusters from Minibatch K-means 
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clustering, this algorithm includes four steps to achieve its result. The first step 

involves the creation of a CF-tree from the available dataset (Vergunst, 2017). 

Clustering features are triplets consisting of data points (D), linear sum (LS), and 

square sum (SS) of all data points in the dataset (Vergunst, 2017; Sathiaraj et al., 

2019; Ren, 2020; Cintia et al., 2020), it can be represented by the set as CF = (D, 

LS, SS), where  

𝐿𝑆⃗⃗⃗⃗ =  ∑ 𝑑𝑖
⃗⃗  ⃗𝐷

𝑖=1   …… (14) 

𝑆𝑆⃗⃗⃗⃗ =  ∑ (𝑑𝑖)
2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝐷

𝑖=1  …… (15) 

The assembly of cluster features into CF-tree is based on two factors: 

branching factor (B) which is the maximum number of subclusters in each internal 

node and threshold (T) is the specified number of data points inside each sub-cluster 

in a leaf node, as shown in Figure 3.13. All the nodes contain mostly B subclusters, 

and these entries are formed by CF and child nodes. These child nodes contain CF 

itself restricted by a certain amount (B), resulting in a tree consisting of CF’s. In the 

second step, the algorithm analyses the developed tree and tries to create a smaller 

tree by removing outliers and combining similar CF’s. The third step involves 

clustering of leaves or child nodes of the CF. By compression, the algorithm 

achieves the pre-specified number of clusters by the user. The fourth or final step 

involves error identification and redistribution of the data (Vergunst, 2017). 

As indicated by the cited literature & survey, there is a little-to-no application 

of the BIRCH algorithm on remote sensing data let alone for landslide identification. 

Although, it was applied to predict climate types using temperature and precipitation 

data for the continental United States (Sathiaraj et al., 2019). It has also been applied 

for the partitioning of dimensionally reduced hyperspectral images (Ren et al., 
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2020). For this study, the parameters branching factor (B) and threshold (T) were 

kept at 50 and 0.01, respectively.  
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Figure 3.13: Clustering using Hierarchies (BIRCH)  
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3.5.2.4 Gaussian Mixture Models (GMM) 

 

It is a probability model type of algorithm that assumes Gaussian distribution 

for all data points (Vergunst, 2017). GMM clusters maximize the hypothesis that a 

statistical probability is true, and relative to the dataset (Tran et al., 2019).  Recently, 

the GMM clustering algorithm was employed on LiDAR-derived DEM for landslide 

detection and was compared with K-means (section 3.5.2.1) (Tran et al., 2019). Ari 

& Aksoy (2010) suggested “Particle Swarm Optimization” for GMM to classify 

satellite images, whereas Li (2013) employed GMM in conjunction with “Markov 

Random Fields” for hyperspectral image classification. GMM is advantageous for 

being efficient and flexible. The availability of hard and soft/fuzzy clustering makes 

it highly flexible (Vergunst, 2017; Tran et al., 2019). Hard clustering is assigning a 

data point strictly to one cluster, whereas soft/fuzzy clustering assigns probability 

scores to each data point for its belongingness to a particular cluster (Tran et al., 

2019). Some drawbacks include the requirement of a user-defined number of clusters 

for fitting and the assumption of the dataset being normally distributed (Gaussian 

distribution). 

The clustering process for this algorithm involves the assumption that there is 

a certain number of Gaussian distributions in the dataset and each of these 

distributions is described as a cluster. This algorithm tends to cluster data points 

based on the probability of their belongingness to a particular distribution while 

parameters are unknown as depicted in Figure 3.14. The parameters of the model are 

estimated by Expectation-Maximization (EM) (Li et al., 2013), which counters the 

ill-effects caused by the missing values or incomplete dataset. The model first 

generates training data by using the EM algorithm. It employs two steps where the 

first step is to generate expected values which are then maximized to be used in the 

next step. The primary focus here is to maximize the likelihood of the parameters, 
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which can be iterated over many times. The algorithm can converge to a local 

optimum while maintaining a reasonably fast algorithm (Vergunst, 2017). After the 

model is generated based on the given parameters, which can also be modified later, 

the model is then deployed on the rest of the data for clustering. 

For GMM, a probability density function for likelihood was given as the sum of K 

Gaussian components (Li et al., 2013), which is given by: 

𝑃(𝑋|𝜔) =  ∑ 𝛼𝑘𝜂(𝑋,  𝜇𝑘,  𝜉𝑘)
𝐾
𝑘=1  ……... (16) 

Where, 𝜂(𝑋,  𝜇𝑘,  𝜉𝑘)  indicates kth Gaussian component, K represents the total 

number of mixture components (clusters), 𝛼𝑘 ,  𝜇𝑘 ,  𝜉𝑘  define the mixing weight, 

mean, and covariance matrix, respectively.  

In this study, the number of components specified was 50 and all other available 

parameters in the “scikit-learn” library for GMM were kept at default. 
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3.5.2.5 Adopted Clustering Methodology 

 

As discussed earlier, landslide inventory maps were generated using four 

unsupervised clustering algorithms. The parameter selection is quite limited in 

unsupervised algorithms, which could assist in fast emergency response for 

inventory mapping (Zhai et al., 2020). The number of clusters can be manually 

selected by the user. The obtained differenced images with two input features (NDVI 

and TBI) were first normalized and then clustered into 50 distinct centroids, 

followed by subsequent manual recoding of the obtained image into landslide and 

non-landslide regions. 

3.6 Quantitative Analysis of the Landslide Inventory Maps (LIM) 

 

Assessment of landslide inventory maps acquired from unsupervised and 

supervised pixel-based classification requires a validation set with precise ground 

truth information (Keyport et al., 2018). Assessment of landslide maps from the 

validation set contains a total of 52 polygons, in which 40 polygons (1247 pixels) 

corresponds to verified landslide regions and 12 large polygons (1436 pixels) 

represents regions identified as non-landslide. These reference pixels were verified 

from the past research works conducted by Lin et. al. (2004) & Lin et. al. (2006). 

These points were compared with the landslide inventory maps produced by 

supervised and unsupervised algorithms to obtain omission and commission errors 

for each category. 

The inventory map assessment was conducted by the error matrix, which was 

used for comparison. Metrics such as “Producer’s Accuracy” (PA), “User’s 

Accuracy” (UA), “Kappa Statistics” (K), and “Overall Accuracy” (OA) were 

derived from the error matrix. 
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3.6.1 User’s Accuracy (UA) 

 

It is an accuracy of a map based on the perspective of a map user, not the map 

maker. It is the ratio of the total number of correctly classified pixels in a category 

and total classified pixels in that category (Row Total).  

It represents the possibility of a pixel that was classified by the model into a given 

group actually defines that land cover group on the field.  

𝑈𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙
× 100  …… (17) 

 

3.6.2 Producer’s Accuracy (PA) 

 

The Producer’s Accuracy is based on the map maker instead of the map user. 

It can be calculated by dividing the total number of correctly classified pixels in a 

given category by the total number of reference pixels in that category (Column 

Total). 

It defines how well the pixels in the validation set are correctly classified in the given 

land cover category. 

𝑃𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙
× 100  …… (18) 

3.6.3 Overall Accuracy (OA) 

 

Overall accuracy is the total percentage of correctly classified pixels. It can 

be computed using the total number of correctly classified pixels divided by the total 

number of reference points.  

𝑂𝐴 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑖𝑥𝑒𝑙𝑠
× 100  …… (19) 
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3.6.4 Cohen’s Kappa (K) 

 

Also known as Kappa Statistics or Kappa Index or just Kappa is much more 

robust than the conventional percentile-based accuracy metrics. The Kappa 

coefficient indicates whether the probability of an agreement is by chance or is it 

random.  

The Kappa Statistics is denoted by K and can be calculated as: 

𝐾 =
(𝑁×𝑑) − 𝑞 

𝑁2 − 𝑞
      …... (20) 

Where N is the total reference points, d is the total sum of correctly classified pixels, 

while, q is given by Eq. (20a) 

𝑞 = (𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙 × 𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙) + (𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙 × 𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙) ….. (20a) 

 

The aforementioned metrics were computed from the error matrix of all nine 

landslide inventory maps as per the mathematical formulations specified above and 

compared. The model producing a landslide map with the best overall assessment 

was selected as the finest model. The next chapter reports the results obtained from 

all the proposed algorithms. 

 

 

 

 

 

 

Non-Landslides Landslides 
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Chapter 4 Results 

 

In this chapter, the results are presented that were obtained from the 

benchmarking tools to evaluate the training of supervised algorithms. Also, a 

detailed comparison is illustrated for the identified non-landslide and landslide 

regions to determine the best algorithm for generating a landslide map with the 

highest classification accuracy.  

4.1 Landslide Inventory Maps (LIM) 

4.1.1 Supervised Approach 

 

The dataset as described in the previous chapter was used for the training and 

testing phase for supervised machine learning. Various benchmarks such as Test 

Accuracy, 20-fold Cross-Validation, and Root Mean Square Error were computed 

to examine the fit of the trained models on the established dataset. Subsequently, the 

trained models were used to classify and generate the Landslide Inventory Maps.  

The acquired dataset outlined in the previous chapter was subdivided into a 

training (25%) and testing set (75%). The algorithms were trained and then the fit 

condition on the given dataset was evaluated using three metrics: (a) Test accuracy, 

the classification score on the testing set, (b) K-fold Cross-Validation score, the 

mean accuracy for 20 folds, (c) Root Mean Square Error, computed for both training 

set and testing set. For the parameter optimization, “GridsearchCV” was employed 

to obtain optimum values for each parameter. This technique requires a set of 

probable values for each parameter specified by the user’s knowledge and 

experience in the field of machine learning. The technique looped over all the 

possible combinations of pre-specified values and returned the most optimal 

combination of values that provided the highest classification score. The benchmark 

set for training the model and optimizing its parameters are as follows: 
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(a) The variation between Test Accuracy and 20-fold Cross-Validation accuracy 

was targeted to be kept below 5% (0.05), as a large variation may result in 

overfitting or underfitting of the model. 

(b) The difference between RMSE values for the training and testing set was kept 

below 0.05. 

Table 1: Values for the Evaluation Metrics 

Algorithms Test Accuracy 
Cross-

Validation 

RMSE for the 

Training Set 

RMSE for the 

Testing Set 

SVM 0.9639 0.9686 0.1763 0.1899 

DT 0.9659 0.9717 0.1532 0.1844 

ET 0.9679 0.9719 0.1655 0.1791 

RF 0.9676 0.9730 0.1574 0.1799 

XGBoost 0.9685 0.9721 0.1595 0.1772 

 

The best aforementioned metric scores obtained following the training and 

parameter tuning for each algorithm are specified in Table 1. All the algorithms 

showed better variation than the target benchmark. SVM and ET showed the same 

and lowest variance in RMSE of 0.0136 for both sets followed by XGBoost with 

0.0177. The RF model showed an average RMSE variance of 0.0225, the highest 

variance was observed for the DT model of 0.0312. The lowest difference between 

Test Accuracy and Cross-Validation was observed in the XGBoost model at 0.0036. 

The ET model nearly follows XGBoost with a variation of 0.0040 followed by SVM 

with 0.0047. The highest variance was observed in DT and RF of 0.0058 and 0.0054, 

respectively. The fine-tuning of each algorithm was conducted until the best minimal 

variation was achieved. However, the borderline variance was kept at 5% between 

Test Accuracy and Cross-Validation, whereas 0.05 for RMSE. If any of the proposed 

models showed variance larger than this then that respective model would be 
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subsequently rejected from this study. All models showed good results in terms of 

benchmark metrics proposed in this study for training and parameter tuning 

purposes. Although, low variation doesn’t automatically guarantee a superior 

classification accuracy for developing predictive systems, but only indicates how 

well the model has fitted on the given dataset. 

Additionally, two more evaluation metrics were monitored during the training 

of the XGBoost algorithm. For this algorithm number of weak predictors are 

constructed sequentially in which each new predictor is an improvement over its 

predecessor. Classification Error and Log Loss function as described in section 

3.5.1.5 was monitored for each constructed predictor on training and testing set 

simultaneously. Too many weak learners may tend to make the XGBoost algorithm 

overfit. So initially, the number of predictors was defined at 1000 with an early 

stopping criterion. The stopping criteria was kept for 10 rounds, indicating that the 

sequential generation of weak predictors will be terminated if no improvement 

(reduction) in the Log Loss function in only the testing set was observed for the next 

10 learners (epochs). During the training process, classification error decreased with 

minor fluctuations until it reached 203 epochs after which classification error for the 

testing set started to gradually increase, whereas for the training set it was nearly 

constant. The Log Loss function sharply declined till round 124 after which 

negligible deviations were observed resulting in a near about constant straight line 

as shown in Figure 4.2. The training process terminated at round 213 with an output 

statement indicating 203 as the best early stopping round. At the first epoch, the 

classification error was 0.08159 and 0.09229 whereas the Log Loss function value 

was 0.65895 and 0.65984 for the training and testing set, respectively. Both 

simultaneously reduced at 203 epochs with an error value of 0.02546 and 0.03141, 

and the loss value was at 0.08969 and 0.10785 for the training and testing set, 
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respectively. As per the customized criterion, the Log Loss function was monitored 

for only the testing set. From epoch 204 the loss function marginally rose and the 

training was terminated at round 213 where the loss function markedly increased to 

0.10806 from 0.10785 at 203. Hence, these 203 weak learners were chosen as the 

best committee of weak learners for detecting landslides. Graphs were plotted to 

visualize the change in Classification Error and Log Loss function for each epoch 

till early termination are presented in Figures 4.1 and 4.2, respectively. The optimal 

parameter values for each algorithm are given in Tables 2, 3, and 4. 

  

  

Algorithm Criterion 
Max 

Depth 

Max 

Leaf 

Nodes 

Max 

Samples 

Min 

Samples 

Leaf 

Min 

Samples 

Split 

No. Of 

Estimators 

DT Entropy 19 39 - 3 2 1 

ET Gini 17 45 - 2 2 84 

RF Gini 7 36 0.9644 3 7 105 

Figure 4.1: Plot for XGBoost Classification Error 

 

 

Table 2: Optimal Parameter values for Ensembled Tree Algorithms 
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Table 3: Optimal Parameter values for XGBoost 

Colsample_bytree 0.5054 

Gamma 0.01 

Learning Rate 0.04799 

Max Depth 2 

Min Child Weight 0.7646 

Reg_Alpha 0.4921 

Reg_Lambda 0.5066 

Subsample 0.6831 

No. of Estimators 203 

 

 

 

Figure 4.2: Plot for XGBoost Log Loss function 

 



  

75 

 

Table 4: Optimal Parameter values for SVM 

Kernel C Gamma Tolerance 

RBF 1.356 148 1 

  

The trained models based on the benchmarks as outlined earlier were saved in 

the local system using the “pickle” open-source library for python. The saved model 

was then directly deployed on the entire normalized differenced image with stacked 

input features (NDVI and TBI) to detect landslides. The resulting landslide maps 

from all five supervised learning models with landslide predictions are depicted in 

Figure 4.3. The differenced image contained a total of 279,000 pixels on which 

binary classification was conducted i.e., landslide (red) and non-landslide (green). 

The number of pixels and total area in hectares according to the classification results 

from five models is presented in Table 5. 

 

 

  

(a) (b) 
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(c) 

Figure 4.3: Landslide Inventory Maps from Supervised Models (a) SVM, (b) DT, 

(c) ET, (d) RF, (e) XGBoost 

 

(d) 

(e) 
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Table 5: Classification Results from Supervised Learning Algorithms 

Algorithms Landslide Non-Landslide 

 No. of Pixels Area (ha) No. of Pixels Area (ha) 

SVM 69215 1081.48 209785 3277.89 

DT 61574 962.094 217426 3397.28 

ET 63723 995.672 215277 3363.70 

RF 63601 993.766 215399 3365.61 

XGBoost 63081 985.641 215919 3373.73 

 

4.1.2 Unsupervised Approach 

 

The topographic signatures were extracted based on 50 distinct clusters by 

applying K-means, Minibatch K-means, BIRCH, GMM clustering techniques. 

Following the clustering from the stacked features, a selection of clusters pertain to 

which group (landslide or non-landslide) was manually performed. Figure 4.4 

demonstrates the Landslide Inventory Maps obtained following the manual 

designation of clusters into a landslide (red) and non-landslide region (green). The 

number of classified pixels and area (ha) for landslide and non- landslide regions are 

given in Table 6.  
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  (b) 

(c) (d) 

Figure 4.4: Landslide Inventory Maps from Unsupervised Clustering (a) K-

means, (b) Minibatch K-means, (c) BIRCH, (d) GMM 

 

(a) 
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Table 6: Classification Results from Unsupervised Learning Algorithms 

Algorithms Landslide Non-Landslide 

 No. of Pixels Area (ha) No. of Pixels Area (ha) 

K-means 64808 1012.63 214192 3346.75 

Minibatch K-

means 
67788 1059.19 211212 3300.19 

BIRCH 65468 1022.94 213532 3336.44 

GMM 61039 953.734 217961 3405.64 

 

4.2 Accuracy Assessment and Comparison 

 

First, the dataset extracted from the differenced image (stacked with NDVI 

and TBI) was split into a training set (25%) and testing set (75%) on which the 

supervised models were trained and evaluated for their fit. The trained models were 

then directly employed on the entire image for classification. The unsupervised 

algorithms were directly utilized on the entire differenced image for clustering 

followed by manual recoding of these clusters into landslide and non-landslide 

regions as discussed in the earlier sections. In this study, nine landslide maps were 

generated to investigate the capabilities of the proposed algorithms. For this purpose, 

a validation set was adopted with valid ground truth information of the study area. 

As outlined in section 3.6, a total of 52 polygons of which 40 polygons (1247 pixels) 

and 12 polygons (1436 pixels) that represent landslide and non-landslide terrains, 

respectively. The assessment of these maps was based on the criterion of User’s 

Accuracy (UA), Producer’s Accuracy (PA), Kappa Statistics (K), and Overall 

Accuracy (OA). Table 7 shows the quantitative statistics from error matrices derived 

for the generated landslide maps.  
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Table 7: Error Matrix for Inventory Maps based on Validation Set 

Algorithm 
Class 

Name 

Pixels from the 

Landslide Maps Row 

Total  

UA 

(%) 

PA 

(%) 

OA 

(%) 
K 

Non-

Landslide 
Landslide 

BIRCH 

Non-

Landslide 
1287 3 1290 99.77 89.62 

94.33 0.887 

Landslide 149 1244 1393 89.30 99.76 

GMM 

Non-

Landslide 
1322 56 1378 95.94 92.06 

93.66 0.873 

Landslide 114 1191 1305 91.26 95.51 

K-means 

Non-

Landslide 
1343 16 1359 98.82 93.52 

95.94 0.9187 

Landslide 93 1231 1324 92.98 98.72 

Minibatch 

K-means 

Non-

Landslide 
1264 3 1267 99.76 88.02 

93.48 0.8701 

Landslide 172 1244 1416 87.85 99.76 

SVM 

Non-

Landslide 
1238 3 1241 99.76 86.21 

92.51 0.8510 

Landslide 198 1244 1442 86.27 99.76 

DT 

Non-

Landslide 
1315 3 1318 99.77 91.57 

95.38 0.9077 

Landslide 121 1244 1365 91.14 99.76 

ET 

Non-

Landslide 
1288 3 1291 99.77 89.69 

94.37 0.8877 

Landslide 148 1244 1392 89.37 99.76 

RF 

Non-

Landslide 
1316 4 1320 99.70 91.64 

95.38 0.9077 

Landslide 120 1243 1363 91.20 99.68 

XGBoost 

Non-

Landslide 
1320 5 1325 99.62 91.92 

95.49 0.9099 

Landslide 116 1242 1358 91.46 99.60 
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Figure 4.5: Bar chart for the Overall Accuracy from various Algorithms 

 

Figure 4.6: Bar chart for the Kappa Statistics from various Algorithms 
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The best K and OA (%) value was achieved by the K-means algorithm of 

0.9187 and 95.94% closely followed by the XGBoost algorithm with 0.9099 and 

95.49%, respectively. The lowest performance was achieved by the SVM model and 

Minibatch K-means for individual supervised and unsupervised approach, 

respectively. The lowest accuracy among all the algorithms was achieved by the 

SVM model with K and OA values at 0.8510 and 92.51%, respectively. The UA (%) 

for the non-landslide validation set was nearly identical across most of the 

algorithms with the lowest being in the GMM model of 95.94%, as for the landslide 

validation lowest UA resulted in the SVM model of 86.27%. The K-means algorithm 

achieved the highest UA for landslide (92.98%), while it was almost identical across 

XGBoost, GMM, DT, and RF. The remaining ET, Minibatch K-means, and BIRCH 

achieved UA just below 90%. On the other hand, PA in BIRCH, Minibatch K-

means, SVM, DT, ET was the same at 99.76% on landslides, while the RF and 

XGBboost models were not far behind with 99.68% and 99.60%, respectively, and 

K-means yielded 98.72%. The lowest PA of 95.51% for landslides was observed in 

GMM. The highest PA for the non-landslide set was observed in the K-means of 

about 93.52% with the second being GMM and then XGBoost at 92.06% and 

91.92%, respectively. The lowest PA for the non-landslide set was found in the SVM 

model of 86.21%. Figures 4.5 and 4.6 illustrate the bar plot for Kappa Statistics (K) 

and Overall Accuracy (OA) from all the proposed algorithms. 
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 Chapter 5 Discussion & Conclusion 

 

Landslide detection still faces several complexities owing to the various 

disparity in quality and spatial resolution of remotely sensed data. Recent research 

works aspire to implement the applicability of machine learning (data mining) to 

improve landslide modeling and mapping. This study was carried out in a densely 

vegetated mountainous region of Mt Jou-Jou in Central Taiwan. For this, four 

unsupervised and five supervised learning algorithms were utilized that were 

combined with pixel-based image differencing technique from multi-date SPOT-2 

images to generate Landslide Inventory Maps. The use of remote sensing data 

eliminates the requirement of time-consuming and costly field surveys. The 

topographic terrains of landslides and non-landslide regions were recognized and the 

impact of two inversely related spectral indices (NDVI and TBI) were analyzed 

together in the same data frame on the landslide locations. Various training strategies 

greatly influence the results of supervised learning algorithms. During the training 

process, three benchmark metrics (Test Accuracy, Cross-Validation, RMSE) were 

monitored to eliminate overfitting or underfitting of the models. Some detailed 

parameter tuning was conducted on each supervised algorithm by considering a 

greater number of parameters to make the models more robust and accurate. The 

unsupervised approach only included separation of the whole differenced image into 

50 distinct clusters and then designating each cluster into landslide and non-landslide 

groups. 

Nine Landslide Inventory Maps were generated and comprehensively 

compared for their landslide recognition. A validation set that accurately depicts the 

on-site information was used to perform the quantitative analysis on these maps. The 

analysis implied that all the algorithms yielded good results when using input 

features (NDVI and TBI). However, K-means, XGBoost, RF, and DT algorithms 
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exhibited the highest rank in Overall Accuracies and Kappa Statistics. The results 

from K-means showed the highest classification accuracy, which is a rapid and time-

effective technique. The second-best method was found to be XGBoost for landslide 

detection whereas DT and RF showed similar classification accuracy not lagging far 

behind. All the proposed algorithms achieved accuracies greater than 90%. The 

SVM model showed the lowest accuracy but yielded very good results. As illustrated 

in Table 7, the tradeoff between landslide and non-landslide validation pixels greatly 

impacted the overall assessments. For instance, algorithms such as BIRCH, 

Minibatch K-means, SVM, and ET yielded the highest accuracy for landslide 

validation set but at the cost of non-landslide inaccuracies. GMM achieved a higher 

number of correctly classified pixels for non-landslide but, the number of correct 

pixels in landslide greatly reduced. However, K-means, DT, RF, and XGBoost had 

significantly lower tradeoffs as a result achieved better overall accuracy. A common 

hypothesis has been adopted that most of the supervised algorithms will always yield 

better results, this may not imply that they will automatically outperform 

unsupervised techniques in all aspects. Our analysis revealed that unsupervised 

methods can still produce slightly better results in some ideal cases. Ghorbanzadeh 

(2019) gave similar implications that CNN outperforms SVM and RF on a case-by-

case basis depending on its window and patch size.    

The results of the comparison indicated that the inverse relation between 

NDVI and TBI quite agrees with the landslide signatures. In contrast, the NDVI was 

negative and TBI was positively correlated with landslides. Using such a dataset 

with simple attributes simplifies decision boundaries with fewer efforts on parameter 

optimization, reduces computational complexity, and improves the model. However, 

partitioning of landslide and non-landslide regions in densely vegetated terrains like 

Mt Jou-Jou is quite challenging and complex. Pradhan & Mezaal (2018) indicated 
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that accuracy may reduce even if the same algorithms or techniques are applied to 

other areas. The reasons could be different characteristics, sensor, environmental, 

and illumination conditions. Although, the present study can be used as a basis 

during the selection process when rapid and efficient results are of the essence. In 

this context, landslide identification techniques based on data mining are suitable to 

generate well-organized Landslide Inventory Maps. Various techniques have been 

proposed for this purpose. For instance, Chen et. al. (2014) used LiDAR-based DTM 

in conjunction with RF for landslide detection but, the best overall accuracy 

achieved was 78%. Tavakkoli et. al. (2019) integrated UAV and DEM data with a 

stacked machine learning model which included three models as the base classifier. 

The quantitative analysis showed that the overall accuracy of their study was 89.8%. 

Tran (2019) proposed a comparative study along with analysis on the effects of the 

predefined number of clusters on GMM and K-means in which both algorithms 

achieved nearly 87% overall accuracy at 2 to 4 clusters. 

An additional investigation shall be conducted for the selection of appropriate 

feature extractors to generate Landslide Inventory Maps. As illustrated in Figures 

4.3 and 4.4, all algorithms misclassified some of the dried streams and bare soil areas 

as landslides. Pradhan & Mezaal (2018) emphasized taking necessary measures to 

avoid misclassification of landcover classes more similar to landslides such as bare 

soil, man-made cut slope, etc. For instance, slope, terrain, texture, and other 

morphological characteristics may differ after landslides. Therefore, information 

derived from various sources such as topographic, hydrological, vegetation, 

lithology, and soil maps can be integrated to define a clearer boundary between 

similar land cover classes. However, this may not be true for all the wide variety of 

available data. Ghorbanzadeh et. al. (2019) effectively detected landslides by only 

integrating the spectral information with NDVI. Further addition of topographic 
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features slightly reduced the overall accuracy of the CNN model, but it was quite 

helpful for classification between settlement area and the landslide area that had 

similar spectral behavior. Hence, appropriate input feature analysis is critical for 

landslide assessment.  

A few of the drawbacks in this study were: (1) limited feature analysis, and 

(2) no comparison with other popular deep learning techniques such as ANN, DNN, 

CNN, RNN, etc. (3) the models will fail to detect some of the deposited or displaced 

areas with no harm to their vegetation condition. In this study bitemporal images 

were adopted for detecting landslides, which were acquired just before and after the 

earthquake. Perhaps, the proposed unsupervised and supervised learning algorithms 

produced highly accurate landslide identification from this analysis since the 

differenced image from the bi-temporal images majorly included landslides and 

other change information such as land-use, land-cover, and water level change, etc., 

were hardly present. However, if the bitemporal images included change 

information, for example, new man-made structures such as roads, buildings, etc., it 

would have been difficult to classify these man-made structures from landslides with 

only spectral vegetation or brightness indices on the accounts of their identical 

structural features resulting in further deterioration of overall accuracy. Hence, the 

performance of the proposed algorithms in this study is highly dependent on the bi-

temporal images (Lei et al., 2018) as well as the spectral nature. Overall, all the nine 

algorithms exhibited excellent performance for landslide assessment, but 

comparatively, the K-means algorithm yielded the best performance. Therefore, K-

means is proposed as a promising technique for detecting landslides induced by 

earthquakes in mountainous regions similar to Mt Jou-Jou for its efficient and speedy 

production of landslide maps if integrated with SPOT-2 image. However, if a 

detailed analysis on landslide along with lower misclassification between similar 
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land cover classes is to be conducted then additional features derived from DEM 

such as topography, morphology, lithology, etc. that require additional processing 

and would not generate landslide maps rapidly but could provide in-depth 

information on landslides.  

This study provides a comprehensive comparison of nine landslide inventory 

maps produced from four unsupervised and five supervised data mining algorithms 

was conducted to determine their further feasibility. The adopted system included: 

(1) a pixel-based image differencing technique, (2) suitable input features (NDVI & 

TBI), and (3) intelligent self-reliant decision-making techniques (data mining). The 

landslide maps were validated using reference pixels with accurate in-situ 

information. Error matrix for each map was computed based upon these pixels. 

Quantitative statistical analysis was based on “Producer’s Accuracy” (PA), “User’s 

Accuracy” (UA), “Overall Accuracy” (OA), and “Kappa” (K) which were computed 

to provide a baseline idea of the precision.  

All the algorithms achieved accuracies higher than 90% maintaining their 

applicability for future studies. K-means algorithm achieved the highest Kappa 

(Overall Accuracy) of 0.9187 (95.94%) with a close follow-up from the XGBoost 

algorithm i.e., 0.9099 (95.49%). The Extra Trees and Decision Tree achieved similar 

accuracy of 0.9077 (95.38%). The lowest Kappa (Overall Accuracy) among all 

algorithms was observed in Support Vector Machines (SVM) i.e., 0.851 (92.51%). 

Recent research trends follow the adoption of newer deep learning algorithms with 

a time-consuming training process that heavily requires monitoring at each step. 

These research works occasionally ignored to compare their results with some of the 

simpler and older algorithms such as K-means, Decision Tree, etc. This study proves 

that in some exceptional cases some simpler models can outmatch or provide 

appreciable results in comparison to newer and complex data mining techniques. 
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Further contributions of this research towards the field of data mining-aided 

landslide detection are mentioned below: 

(1) Establishment of a suitable non-complex dataset composed of inversely 

related spectral indices that complement each other for landslide detection. 

(2) Detailed accuracy assessment with various quantitative statistical tools. 

(3) Comparison between a wide range of data mining algorithms. 

(4) Proposed a rapid landslide assessment system with reliable landslide 

inventory maps using K-means which is independent of human supervision. 

Nonetheless, this study still requires further improvement and sophisticated 

statistical assessment to provide precise relevance in landslide analysis. Future 

research work could append input features into the data frame such as topographic, 

hydrological, geological data and analyze their responsiveness on the performance 

of these algorithms. The images could also be analyzed using the OBIA techniques. 

These algorithms can be further compared with some of the widely proclaimed deep 

learning models in the data science community such as ANN, CNN, DNN, and 

RNN, etc. As the validation and comparison of these inventory maps were based on 

a small patch of reference pixels, the future study would also include further 

comparison with inventory maps authorized by government agencies to accurately 

delineate the boundaries. In addition to this, the site can be further monitored and a 

Landslide Susceptibility Map can be produced to provide information on its current 

recovery status and vulnerable slopes using recent high-resolution satellite imagery 

from the SPOT-6 sensor with a pixel size of 6 x 6 (m). Although, such satellites 

contain very large datasets that K-means and GMM would fail to analyze. In such 

cases, Minibatch K-means and BIRCH would be an ideal choice for clustering as the 

algorithm initially splits the dataset into smaller subsamples (mini-batches), and the 

latter compacts & summarizes a large dataset while retaining as much information 

as possible followed by centroid selection and clustering. Nonetheless, the results 
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obtained from this research give implication towards a rapid and quick emergency 

response system by integrating SPOT-2 remote sensing data with K-means along 

with NDVI and TBI for Landslide Inventory Mapping.  
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Appendix 
 

Appendix I: Supervised Algorithms 

(a) Support Vector Machines (SVM) 

1. import pandas as pd 
2. import numpy as np 
3. from sklearn.preprocessing import Normalizer 
4. from sklearn.svm import SVC 
5. from sklearn.model_selection import train_test_split, cross_val_score, 

GridSearchCV 

6. from sklearn import metrics 
7. from sklearn.metrics import mean_squared_error 
8. from imblearn.over_sampling import SMOTE 
9. import pickle 
10.  

11. #Importing Dataset into the Pandas Dataframe 

12. df = pd.read_csv("Filename.csv", index_col= []) 

13. X = df.drop("Column Header", axis= "columns") 

14. y = df["class"] 

15.  

16. #Split into Training and Testing Set 

17. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=  

18. 50, train_size= 0.25) 

19.  

20. #OverSampling 

21. over = SMOTE(random_state= 50) 

22. X_train_os, y_train_os = over.fit_sample(X_train, y_train) 

23. X_test_os, y_test_os = over.fit_sample(X_test, y_test) 

24.  

25. #Normalization 

26. mm = Normalizer() 

27. X_train_mm = mm.fit_transform(X_train_os) 

28. X_test_mm = mm.fit_transform(X_test_os) 

29.  

30. #Hyperparameter Tuning 

31. svm = SVC(kernel= "rbf", random_state= 50) 

32. parameters = {"C": [], "gamma": [], "tol": []} 

33.  

34. svm_h = GridSearchCV(svm, parameters, n_jobs= -1, verbose= True) 

35. svm_h.fit(X_train_mm, y_train_os) 

36.  

37. print("The Best Score is: ", svm_h.best_score_) 

38. print("Best Parameters are: ", svm_h.best_params_) 

39. print(svm_h.best_estimator_) 

40.  

41. svm_tuned = svm_h.estimator 

42. svm_tuned.fit(X_train_mm, y_train_os) 

43. acc_tuned = svm_tuned.score(X_test_mm, y_test_os) 

44. print("Accuracy with the Optimum Parameters: ", acc_tuned) 

45.  

46. #Training & Testing the Tuned Model 

47. clf = SVC(kernel= "rbf", C= 1.356, gamma= 148, random_state= 50, tol=  
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48. 1) 

49. clf.fit(X_train_mm, y_train_os) 

50. accuracy = clf.score(X_test_mm, y_test_os) 

51. print("Test Accuracy: ", accuracy) 

52.  

53. #Cross-Validation 

54. cv = cross_val_score(clf, X_train_mm, y_train_os, cv= 20) 

55. print(cv) 

56. print("CROSS-VALIDATION SCORE: ", cv.mean()) 

57.  

58. predict = clf.predict(X_test_mm) 

59. predict2 = clf.predict(X_train_mm) 

60.  

61. #Root Mean Square Error for Testing Set 

62. mse = mean_squared_error(y_test_os, predict) 

63. rmse = np.sqrt(mse) 

64. print("Root Mean Square Error on Testing Set is: ", rmse) 

65.  

66. #Root Mean Square Error for Training Set 

67. mse2 = mean_squared_error(y_train_os, predict2) 

68. rmse2 = np.sqrt(mse2) 

69. print("Root Mean Square Error on Training Set is: ", rmse2) 

70.  

71. #Saving the Model 

72. pickle.dump(clf, open("Model Name.pickle", "wb")) 

(b) Decision Tree (DT) 

1. import pandas as pd 
2. import numpy as np 
3. from sklearn.tree import DecisionTreeClassifier 
4. from sklearn.model_selection import train_test_split, cross_val_score, 

GridSearchCV 

5. from sklearn.preprocessing import Normalizer 
6. from sklearn import metrics 
7. from sklearn.metrics import mean_squared_error 
8. from imblearn.over_sampling import SMOTE 
9. import pickle 
10.  

11. #Importing Dataset into the Pandas Dataframe 

12. df = pd.read_csv("Filename.csv", index_col= []) 

13. X = df.drop("Column Header", axis= "columns") 

14. y = df["class"] 

15.  

16. #Split into Training and Testing Set 

17. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=  

18. 50, train_size= 0.25) 

19.  

20. #Oversampling 

21. os = SMOTE(random_state= 50) 

22. X_train_os, y_train_os = os.fit_sample(X_train, y_train) 

23. X_test_os, y_test_os = os.fit_sample(X_test, y_test) 

24.  

25. #Normalization 

26. mm = Normalizer() 
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27. X_train_mm = mm.fit_transform(X_train_os) 

28. X_test_mm = mm.fit_transform(X_test_os) 

29.  

30. #Hyperparameter Tuning 

31. clf = DecisionTreeClassifier(random_state= 50) 

32. params = {"max_depth": [], "criterion": [], "splitter": [], 

33. "min_samples_split": [], "max_leaf_nodes": [], "min_samples_leaf": []} 

34.  

35. clf_h = GridSearchCV(clf, params, n_jobs= -1, verbose= True) 

36. clf_h.fit(X_train_mm, y_train_os) 

37.  

38. print("Best Accuarcy: ", clf_h.best_score_) 

39. print("Best Parameter: ", clf_h.best_params_) 

40. print(clf_h.best_estimator_) 

41.  

42. clf_tuned = clf_h.estimator 

43. clf_tuned.fit(X_train_mm, y_train_os) 

44. accuracy = clf_tuned.score(X_test_mm, y_test_os) 

45. print("Accuracy with the Optimum Parameters: ", accuracy) 

46.  

47. #Training & Testing the Model 

48. clf = DecisionTreeClassifier(criterion= "entropy", max_depth= 19,  

49. max_leaf_nodes= 39, min_samples_leaf= 3, min_samples_split= 2,  

50. splitter= "best”, random_state= 50) 

51.  

52. clf.fit(X_train_mm, y_train_os) 

53. accuracy = clf.score(X_test_mm, y_test_os) 

54. print("Test Accuracy: ", accuracy) 

55.  

56. #Cross-Validation 

57. cv = cross_val_score(clf, X_train_mm, y_train_os, cv= 20) 

58. print(cv) 

59. print("CROSS-VALIDATION SCORE: ", cv.mean()) 

60.  

61. #Root Mean Square Error for Testing Set 

62. predict = clf.predict(X_test_mm) 

63. mse = mean_squared_error(y_test_os, predict) 

64. rmse = np.sqrt(mse) 

65. print("Root Mean Square Error on Testing Set is: ", rmse) 

66.  

67. #Root Mean Square Error for Training Set 

68. predict2 = clf.predict(X_train_mm) 

69. mse2 = mean_squared_error(y_train_os, predict2) 

70. rmse2 = np.sqrt(mse2) 

71. print("Root Mean Square Error on Training Set is: ", rmse2) 

72.  

73. #Saving the Model 

74. pickle.dump(clf, open("Model Name.pickle", "wb") 
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(c) Extra Trees (ET) 

1. import pandas as pd 
2. import numpy as np 
3. from sklearn.ensemble import ExtraTreesClassifier 
4. from sklearn.preprocessing import Normalizer 
5. from sklearn.model_selection import cross_val_score, GridSearchCV, 

train_test_split 

6. from sklearn.metrics import mean_squared_error 
7. import pickle 
8. from imblearn.over_sampling import SMOTE 
9.  
10. #Importing Dataset into the Pandas Dataframe 

11. df = pd.read_csv("Filename.csv", index_col= []) 

12. X = df.drop("Column Header", axis= "column") 

13. y = df["class"] 

14.  

15. #Split into Training and Testing Set 

16. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=  

17. 50, train_size= 0.25) 

18.  

19. #Oversampling 

20. os = SMOTE(random_state= 50) 

21. X_train_os, y_train_os = os.fit_sample(X_train, y_train) 

22. X_test_os, y_test_os = os.fit_sample(X_test, y_test) 

23.  

24. #Normalization 

25. mm = Normalizer() 

26. X_train_mm = mm.fit_transform(X_train_os) 

27. X_test_mm = mm.fit_transform(X_test_os) 

28.  

29. #Hyperparameter Tuning 

30. clf = ExtraTreesClassifier(random_state= 50) 

31. params = {"max_depth": [], "n_estimators": [], "criterion": [],  

32. "min_samples_split": [], "max_leaf_nodes": [], "min_samples_leaf": []} 

33.  

34. clf_h = GridSearchCV(clf, params, n_jobs= -1, verbose= True) 

35. clf_h.fit(X_train_mm, y_train_os) 

36.  

37. print("Best Accuarcy: ", clf_h.best_score_) 

38. print("Best Parameter: ", clf_h.best_params_) 

39. print(clf_h.best_estimator_) 

40.  

41. clf_tuned = clf_h.estimator 

42. clf_tuned.fit(X_train_mm, y_train_os) 

43. accuracy = clf_tuned.score(X_test_mm, y_test_os) 

44. print("Accuracy with the Optimum Parameters: ", accuracy) 

45.  

46. #Training & Testing the Model 

47. clf = ExtraTreesClassifier(criterion= "gini", max_depth= 17,  

48. max_leaf_nodes= 45, min_samples_leaf= 2, min_samples_split= 2,  

49. n_estimators= 84, random_state= 50) 

50.  

51. clf.fit(X_train_mm, y_train_os) 

52. accuracy = clf.score(X_test_mm, y_test_os) 

53. print("Test Accuracy: ", accuracy) 
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54. #Cross-Validation 

55. cv = cross_val_score(clf, X_train_mm, y_train_os, cv= 20) 

56. print(cv) 

57. print("CROSS-VALIDATION SCORE: ", cv.mean()) 

58.  

59. #Root Mean Square Error for Testing Set 

60. predict = clf.predict(X_test_mm) 

61. mse = mean_squared_error(y_test_os, predict) 

62. rmse = np.sqrt(mse) 

63. print("Root Mean Square Error on Testing Set is: ", rmse) 

64.  

65. #Root Mean Square Error for Training Set 

66. predict2 = clf.predict(X_train_mm) 

67. mse2 = mean_squared_error(y_train_os, predict2) 

68. rmse2 = np.sqrt(mse2) 

69. print("Root Mean Square Error on Training Set is: ", rmse2) 

70.  

71. #Saving the Model 

72. pickle.dump(clf, open("Model Name.pickle", "wb")) 

(d) Random Forest (RF) 

1. import pandas as pd 
2. import numpy as np 
3. from sklearn.ensemble import RandomForestClassifier 
4. from sklearn.model_selection import train_test_split, cross_val_score, 

GridSearchCV 

5. from sklearn.preprocessing import Normalizer 
6. from sklearn import metrics 
7. from sklearn.metrics import mean_squared_error 
8. from imblearn.over_sampling import SMOTE 
9. import pickle 
10.  

11. #Importing Dataset into the Pandas Dataframe 

12. df = pd.read_csv("Filename.csv", index_col= []) 

13. X = df.drop("Column Header", axis= "columns") 

14. y = df["class"] 

15.  

16. #Split into Training and Testing Set 

17. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=  

18. 50, train_size= 0.25) 

19.  

20. #Oversampling 

21. os = SMOTE(random_state= 50) 

22. X_train_os, y_train_os = os.fit_sample(X_train, y_train) 

23. X_test_os, y_test_os = os.fit_sample(X_test, y_test) 

24.  

25. #Normalization 

26. mm = Normalizer() 

27. X_train_mm = mm.fit_transform(X_train_os) 

28. X_test_mm = mm.fit_transform(X_test_os) 

29.  

30. #Hyperparameter Tuning 

31. clf = RandomForestClassifier(random_state= 50) 

32. params = {"max_depth": [], "n_estimators": [], "criterion": [],  
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33. "min_samples_split": [], "max_leaf_nodes": [], "min_samples_leaf": [],  

34. "max_samples": []} 

35.  

36. clf_h = GridSearchCV(clf, params, n_jobs= -1, verbose= True) 

37. clf_h.fit(X_train_mm, y_train_os) 

38.  

39. print("Best Accuarcy: ", clf_h.best_score_) 

40. print("Best Parameter: ", clf_h.best_params_) 

41. print(clf_h.best_estimator_) 

42.  

43. clf_tuned = clf_h.estimator 

44. clf_tuned.fit(X_train_mm, y_train_os) 

45. accuracy = clf_tuned.score(X_test_mm, y_test_os) 

46. print("Accuracy with the Optimum Parameters: ", accuracy) 

47.  

48. #Training & Testing the Model 

49. clf = RandomForestClassifier(criterion= "gini", max_depth= 7,  

50. max_leaf_nodes= 36, max_samples= 0.9644, min_samples_leaf= 3,  

51. min_samples_split= 7, n_estimators= 105, random_state= 50) 

52.  

53. clf.fit(X_train_mm, y_train_os) 

54. accuracy = clf.score(X_test_mm, y_test_os) 

55. print("Test Accuracy: ", accuracy) 

56.  

57. #Cross-Validation 

58. cv = cross_val_score(clf, X_train_mm, y_train_os, cv= 20) 

59. print(cv) 

60. print("CROSS-VALIDATION SCORE: ", cv.mean()) 

61.  

62. #Root Mean Square Error for Testing Set 

63. predict = clf.predict(X_test_mm) 

64. mse = mean_squared_error(y_test_os, predict) 

65. rmse = np.sqrt(mse) 

66. print("Root Mean Square Error on Testing Set is: ", rmse) 

67.  

68. #Root Mean Square Error for Training Set 

69. predict2 = clf.predict(X_train_mm) 

70. mse2 = mean_squared_error(y_train_os, predict2) 

71. rmse2 = np.sqrt(mse2) 

72. print("Root Mean Square Error on Training Set is: ", rmse2) 

73.  

74. #Saving the Model 

75. pickle.dump(clf, open("Model Name.pickle", "wb"))  
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(e) Extreme Gradient Boosting (XGBoost) 

1. import numpy as np 
2. import pandas as pd 
3. from sklearn.preprocessing import Normalizer 
4. from sklearn.model_selection import train_test_split, cross_val_score, 

GridSearchCV 

5. from imblearn.over_sampling import SMOTE 
6. from sklearn.metrics import mean_squared_error 
7. import matplotlib.pyplot as plt 
8. import xgboost as xgb 
9. import pickle 
10.  

11. #Importing Dataset into the Pandas Dataframe 

12. df = pd.read_csv("Filename.csv", index_col= []) 

13. X = df.drop("Column Header", axis= "columns") 

14. y = df["class"] 

15.  

16. #Split into Training and Testing Set 

17. X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=  

18. 50, train_size= 0.25) 

19.  

20. #Oversampling 

21. os = SMOTE(random_state= 50) 

22. X_train_os, y_train_os = os.fit_sample(X_train, y_train) 

23. X_test_os, y_test_os = os.fit_sample(X_test, y_test) 

24.  

25. #Normalization 

26. mm = Normalizer() 

27. X_train_mm = mm.fit_transform(X_train_os) 

28. X_test_mm = mm.fit_transform(X_test_os) 

29.  

30. #Hyperparameter Tuning 

31. clf = XGBClassifier(booster= "gbtree", random_state= 50, n_estimators=  

32. 50) 

33. params = {"learning_rate": [], "min_child_weight": [], "max_depth":  

34. [], "gamma": [], "subsample": [], "colsample_bytree": [], "reg_lambda":  

35. [], "reg_alpha": []} 

36.  

37. clf_h = GridSearchCV(clf, params, n_jobs= -1, verbose= True) 

38. clf_h.fit(X_train_mm, y_train_os) 

39.  

40. print("Best Accuarcy: ", clf_h.best_score_) 

41. print("Best Parameter: ", clf_h.best_params_) 

42. print(clf_h.best_estimator_) 

43.  

44. clf_tuned = clf_h.estimator 

45. clf_tuned.fit(X_train_mm, y_train_os) 

46. accuracy = clf_tuned.score(X_test_mm, y_test_os) 

47. print("Accuracy with the Optimum Parameters: ", accuracy) 

48.  

49. #Estimating the Best Iteration (Epoch) 

50. clf = xgb.XGBClassifier(booster= "gbtree", colsample_bytree= 0.5045,  

51. gamma= 0.01, learning_rate= 0.04799, max_depth= 2, min_child_weight=  

52. 0.7646, reg_alpha= 0.4921, reg_lambda= 0.5066, subsample= 0.6831,  

53. n_estimators= 1000) 
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54. *Early Stopping Criterion 

55. eval_set = [(X_train_mm, y_train_os),(X_test_mm, y_test_os)] 

56. clf.fit(X_train_mm, y_train_os, eval_metric= ["error", "logloss"],  

57. eval_set = eval_set, verbose= True, early_stopping_rounds= 10) 

58.  

59. accuracy = clf.score(X_test_mm, y_test_os) 

60. print("Accuracy at the Termination Round: ", accuracy) 

61. results = clf.evals_result() 

62. epochs = len(results['validation_0’]['error']) 

63. x_axis = range(0, epochs) 

64. print("Best Iteration: ", clf.best_iteration) 

65.  

66. #Graph Plot for Classification Error 

67. plt.figure(figsize= (16,9)) 

68. plt.plot(x_axis, results['validation_0']['error'], label= 'Training  

69. Set') 

70. plt.plot(x_axis, results['validation_1']['error'], label= 'Testing  

71. Set') 

72. plt.xticks(fontsize= 20) 

73. plt.yticks(fontsize= 20) 

74. plt.legend(fontsize= 20) 

75. plt.ylabel('Classification Error', fontsize= 20) 

76. plt.xlabel('Epochs', fontsize= 20) 

77. plt.show() 

78.  

79. #Graph Plot for Log Loss Function 

80. plt.figure(figsize= (16,9)) 

81. plt.plot(x_axis, results['validation_0']['logloss'], label= 'Training  

82. Set') 

83. plt.plot(x_axis, results['validation_1']['logloss'], label= 'Testing  

84. Set') 

85. plt.xticks(fontsize= 20) 

86. plt.yticks(fontsize= 20) 

87. plt.legend(fontsize= 20) 

88. plt.ylabel('Log loss', fontsize= 20) 

89. plt.xlabel('Epochs', fontsize= 20) 

90. plt.show() 

91.  

92. #Training & Testing the Model with Best Iteration (Epoch) 

93. clf = xgb.XGBClassifier(booster= "gbtree", colsample_bytree= 0.5045,  

94. gamma= 0.01, learning_rate= 0.04799, max_depth= 2, min_child_weight=  

95. 0.7646, reg_alpha= 0.4921, reg_lambda= 0.5066, subsample= 0.6831,  

96. n_estimators= 203) 

97.  

98. clf.fit(X_train_mm, y_train_os) 

99. accuracy = clf.score(X_test_mm, y_test_os) 

100. print("Test Accuracy: ", accuracy) 
101.  
102. #Cross-Validation 
103. cv = cross_val_score(clf, X_train_mm, y_train_os, cv= 20) 
104. print(cv) 
105. print("CROSS-VALIDATION SCORE: ", cv.mean()) 
106.  
107. #Root Mean Square Error for Testing Set 
108. predict = clf.predict(X_test_mm) 
109. mse = mean_squared_error(y_test_os, predict) 
110. rmse = np.sqrt(mse) 
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111. print("Root Mean Square Error on Testing Set is: ", rmse) 
112.  
113. #Root Mean Square Error for Training Set 
114. predict2 = clf.predict(X_train_mm) 
115. mse2 = mean_squared_error(y_train_os, predict2) 
116. rmse2 = np.sqrt(mse2) 
117. print("Root Mean Square Error on Training Set is: ", rmse2) 
118.  
119. #Saving the Model 
120. pickle.dump(clf, open("Model Name.pickle", "wb")) 

(f) Model Deployment 

1. import pandas as pd 
2. import pickle 
3. from sklearn.preprocessing import Normalizer 
4.  
5. #Normalizing the Entire Image 
6. df = pd.read_csv("Image ASCII Filename.csv", index_col= []) 
7.  
8. array = df.values  (Storing the values into a variable) 
9. X = array[: :]     (Converting the values into an array) 
10.  

11. mm = Normalizer() 

12. mm.fit(X) 

13. X_mm = mm.transform(X)  

14.  

15. #Saving the Normalized Values into CSV Format 

16. X_mm_df = pd.DataFrame(X_mm, columns= ["Column Header"]) 

17. X_mm_df.to_csv("Normalized Image ASCII Filename.csv", index= False) 

18.  

19. #Importing Normalized Image into the Pandas Dataframe 

20. df = pd.read_csv("Normalized Image ASCII Filename.csv", index_col= []) 

21.  

22. #Loading the Saved Model for Prediction 

23. model = pickle.load(open("Model Name.pickle", "rb")) 

24. predict = model.predict(df) 

25.  

26. #Saving the Classification Results 

27. predict_df = pd.DataFrame(predict, columns= ["Column Header"]) 

28. predict_df.to_csv("Filename.csv", index= False) 
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Appendix II: Unsupervised Algorithms 

1. import pandas as pd 
2. import numpy as np 
3. from sklearn.cluster import Birch, MiniBatchKMeans, KMeans 
4. from sklearn.mixture import GaussianMixture 
5.  
6. #Importing Normalized Image into the Pandas Dataframe 
7. df = pd.read_csv("Normalized Image ASCII Filename.csv", index_col= []) 
8.  
9. #BIRCH Clustering 
10. cluster = Birch(threshold= 0.01, n_clusters= 50, branching_factor= 50) 

11. prediction = cluster.fit_predict(df) 

12.  

13. pr_df = pd.DataFrame(prediction, columns= ["Column Header"]) 

14. print(prediction) 

15. *Saving the Clustering Results 

16. pr_df.to_csv("Filename.csv", index= False) 

17.  

18.  

19. #Minibatch K-means Clustering 

20. cluster = MiniBatchKMeans(n_clusters= 50, init= "k-means++", max_iter=  

21. 150, batch_size= 150, random_state= 10, tol= 0.001, max_no_improvement=  

22. 10, reassignment_ratio= 0.1) 

23. prediction = cluster.fit_predict(df) 

24.  

25. pr_df = pd.DataFrame(prediction, columns= ["Column Header"]) 

26. print(prediction) 

27. *Saving the Clustering Results 

28. pr_df.to_csv("Filename.csv", index= False) 

29.  

30.  

31. #Gaussian Mixture Model 

32. cluster = GaussianMixture(n_components= 50, verbose= True) 

33. prediction = cluster.fit_predict(df) 

34.  

35. pr_df = pd.DataFrame(prediction, columns= ["Column Header"]) 

36. print(prediction) 

37. *Saving the Clustering Results 

38. pr_df.to_csv("Filename.csv", index= False) 

39.  

40.  

41. #K-means 

42. cluster = KMeans(n_clusters= 50, max_iter= 100, random_state= 0, init=  

43. "k-means++") 

44. prediction = cluster.fit_predict(df) 

45.  

46. pr_df = pd.DataFrame(prediction, columns= ["Column Header"]) 

47. print(prediction) 

48. *Saving the Clustering Results 

49. pr_df.to_csv("Filename.csv", index= False) 


