ELSEVIER

Journal of Systems Architecture 43 (1997) 327--335

JOURNAL OF
SYSTEMS
ARCHITECTURE

Extended abstract
VISUAL: An object oriented language for image understanding

S.L. Chen *, E-ren Chuang ®, W.S. Hsieh &

* Deprirmment of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
b Department of Electrical Engineering, National Kaohsiung Institute of Technology, Kaohsiung, Taiwan, ROC
€ Institute of Compuiter and Information Engineering, National Sun Yar-Sen University, Kaohsiung, Taiwan, ROC

Abstract

VISUAL is an object-oriented and declarative language for locating objects automatically. The language is designed
according to the principle of closeness and the principle of object orientation. A VISUAL program describes the geometric
relationships among components of an object. The inference engine of VISUAL opens the corresponding databases and
N X N 2-D maps of the comporents, then applies chromatographic search for unification. The inference engine outputs a
database and a 2-D map of the object which could be a component of another object to be recognized. Hence VISUAL is a

tool to build up a hierarchical model-based vision system.

Keywords: Object-oriented; Declarative language; Principle of closenes; Chromatographic .earch

1. Introduction

It is generally believed [1] that model-based vi-
sion system include three parts: feature extraction,
object modeling and recognition. The last part in-
cludes a recognition engine. The engine recognizes
objects by comparing features extracted from 2n
input image to the object features in models. There
are various mechanisms for the recognition engine,
as statistical [2] or syntactical [3,4] approach, CAD-

* Corresponding author. Email: wshsich@mail.nsysu.edu.tw.

based vision system [5,6], and rule-based [7] or
prolog-based [8] approach. Different mechanisms rely
on different methods for object modeling.

The current trend of developing programming
language is to integrate declarative, functional, and
object-orientzd languages, and to include the word of
database and programming [9). VISUAL is an ob-
ject-oriented and declarative languages which inte-
grate images and database. Given an image and a
descriptior: of an object in VISUAL, the object will
be automatically located in the image.

This paper is organized as follows: The next
section introduces the fundamental designing princi-

1383-7621 /0165-6074 /97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved

PII S1383-7621/0165-6074(96)00098-7

328 S.L. Chen et al. / Journal of Systems Architecture 43 (1997) 327-335

ples of VISUAL, and how those principle are real-
ized by integrating databases and maps of objects.
Section 3 presents a syntax of VISUAL with a
working example. In Section 4, the internal execu-
tion of VISUAL’s inference engine is dissected in
details, and the time complexity of the inference
engine is analyzed. In Section 5, VISUAL is applied
to locate objects in synthesized and read images.
Those applications show how to express geometric
feature, how to construct hierarchical model-based
vision system, and how to perform image under-
standing tasks in VISUAL.

2, Principles in designing VISUAL

We propose a programming, VISUAL, to perform
the task of image understanding. VISUAL is de-
signed according to two principles: principle of ob-
ject orientation and principle of closeness.

2.1. The principle of object orientation

Almost every image understanding task is to lo-
cate or to recognize objects. However, the compo-
nents of ihese objects are also objects. Since objects
are esseitial elements in image understanding tasks,
the paradigni of object-oriented problem solving is
naturally introduced in VISUAL. This paraldigm fo-
cuses not only on objects, but also on the relation-
ships among objects.

2.2. The principle of closeness

In an image, objects are more likely to have a
close relationship if they are close in distance. For
instances, two line segments in a local area may
form a corner, or parallel lines, so they are more
related to each other. On the contrary, two line
segments are unlikely to be related if they are far
apart, and if there are many other line segments
between them.

3. Syntax of VISUAL

There are three parts in a VISUAL program:
object declaration, componenis relationships and
object description. We wiil use a working program
as an exampie to explzin the syntax of these parts.
The function of this example is locate a line seg-
ment.

3.1. Object declaration

Object declaration is the first part of all VISUAL
programs, Its syntax is as follows:

declaration:
object type-name identifier _list obj_informa-
tion
attribute rype-name identifier _ list
var type-name identifier _list var _information
obj_information:
export _to { filename) type type_specifier
import _from (filename)
var _information:
related _to { filename)
of _type {rype _specifier}

type-name specifies the data type name of the
identifier(s) in the identifier_list, and the
type _specifier follows the rule of C programmng
language. In the following, ohject, attribute, and
var are explained by examples.

(1) If the identifier are components of an object,
their dada and corresponding map will be
import _from filename. If the identifier is an object
to be located, its data set and map will export _to
filename. Examples are shown as follows:

object Pt(spt, ept) import _from {level _1)
object Segment line export _to {/evel _2)
type [typedef struct_Segment {

Pt spt, ept; int theta; }

Segment;]

S.L. Chen et al. f Journal aof Systems Architecture 43 (1997) 327-335 329

(2) If the identifiers are temporary objects in the
program, it should be specified which data set and
map those variables are related to or which data type
they are. Examples are shown as follows:

var Pt(ept!, ept2, npt) related _to {level _1)
var R ray of _type [typedef struct_R {

Pt spt, ept; int theta;)

R;]

(3) If identifiers are attributes of the exported
objeci. their values will be evaluated in the program.
Two examples are shown as follows:

ATTRIBUTY int theta
ib12

The object declaration part could help users to
organize a model-based vision system. The previous
four examples show that a line segment is composed
by edge points imported from (level _1). The data
of line segment will be exported to {level _2). These
line segments could compose polygons so that
level _2) will be imported by another VISUAL
program which tries to locate polygons in (level _2},
then export the data of polygons to (level_3).
Therefore, through the object declarations, user can
construct a hierarchical vision system. An example is
shown in Fig. 1.

3.2. Component relationship

An object is composed of its component objects,
and its structure is cotermined by the relationships
among the components. Users can define the rela-
tionship among the components in the second part of
a VISUAL program. The syntax of this part is
presented as follows:
relation definition:

FUNCTION function-declarator function-body

Both function-declarator and function-body fol-
low the syntax of the function-declarator and func-
tion-body in C programming language. These func-
tions, invoked by the inference engine of VISUAL,

Level 3

¥ Ree!
Edge Database | : Line2 |
detection of <l :

b | edigel Line?

Inference Engine
of VISUAL

Line Segment
description in VISUAL

Description of
rectangle in VISUAL

Fig.). A hierarchical vision system constructed by VISUAL. The
diagram shows the input/output of the inference engine of VI-
SUAL, and depict how to build a hierarchical model-based vision
system.

will test the relationship of the input parameters, and
compute attributes of objects. An example is shown
in Fig. 2.

3.3. Object description

The last part of a VISUAL program is the descrip-
tion of the exported object. It is enclosed by begin
and end. Its syntax is presented as follows:

description:
obj-identifier [comp-and-attr-list] » START
(identifier). expression,
var-identifier [comp-and-attr-list] = expression;
expression:
primary

330 S.L. Chen et al. / Journal of Systems Architecture 43 (1997) 327-335

primary. expression

expression| expression
primary: |

fun-identifier [parameter-list)

var-identifier [parameter-list]

A description begins with obj-identifier (an ex-
ported object) or var-identifier (a variable object).
The var-identifier is mainly used to implement the
technique of recursive call. The components and
attributes of an object are explicitly specified in
comp-and-attr-list. Every component of the comp-
and-attr-list is prefixed by either © or _, which
indicate whether the identity has been or is to be
unified to an object in the database. If the identity is
an attribute, these prefixes indicate whether the at-
tribute has been computed or not.

The identifier in start() represents a key compo-
nent (or feature) of the object. Hansen and Hender-
son [10] enumerates the following five criteria for
choosing key component: rareness, robustness, com-
pleteness consistency, and cost. Actually, choosing a
proper key component can greatly reduce total num-
ber of matching trials. For example, Koenuka and
Kanade [11] choose angles and parallel lines as key
features to match internal models against 2-D shape
data, and reduce the total match trials by the factor

function Naxt (ept!, ept2, theta)

Pt “eptl, “ept2;

int " theta;

(/" test whether point epi2 is next to ept] * /

int dx. dy, d_ th;

double len;

dy = (eptl » y—epr2 = y);

dx = (eptl = x~ept2 = x);

d_ th = abslept! — theta—ept2 — theta);

len = sqrt (double) (dx * dx +dy * dy));

if Jlen< =3.00& & (d_th< 2)
{chi — degree+ = cpt2 — degree:
return(1); }

else return(0);)

Fig. 2. An example of the component relation part in the VISUAL
problem.

begin
line [_ spt, _ ept, theta] =
start (_ spt):

Start Point (" spt),
rayl” spt, _ ept, theta);
ray[" eptl, _ept2, " theta] - df
Next(“eptl, _ npt, " theta),
ray[" npt, _ept2, *theta]|
End point (" cpt)J;

end

Fig. 3. An example of the description part in VISUAL program.
The funclion of the example is to locate line segment.

of 10°— 10, Each expression is group of object
descriptions. Each group is separated from the others
by ““|”’. Primary in a group is separated by **,”". In
Fig. 3, an example demostrates every control struc-
ture in the object description part of VISUAL. The
function of the example is to locate line segment.
The object line is described by two ending points,
spt and ept, and theta, which represents the direction
line. The key component of line is spt which is a
starting point of line. The property of spt is verified
by the function StartPoint(). Ray is a var-identifier.
The value of spt in ray’s comp-and-attr-list is known,
but ept is not. The description of ray is a recursive
call or the function EndPoint(), which means the ray
reaches its end. Thus, by the description of line, all
the possible line in (level _1). Will be automatically
located by the inference engine of VISUAL.

4, Implementation of VISUAL

Since VISUAL is an object-oriented and declara-
tive language, there is an inference engine (INFG) in
VISUAL to perform unification. The input of INFG
is an object description written in VISUAL. The
outputs of INFG are a database and a map. There are
two major components and four precedures in INFG.
The two major components are internal representa-

S.L. Chen et al, / Journal of Systems Architecture 43 (1997) 327-335 331

tion and the chromatographic search(CSH). The four
procedures are initialization, pre-processing, unifica-
tion, and plotting.

4.1. Internal representation

The internal representation of an object is based
on the principle of object orientation. The object type
is defined in the declaration part of a VISUAL
program. Objects of the same type are stored in the
same database and the boundary points of there
objects are depicted in & map. These points in the
map are numbered according to the indices of corre-
sponding object records in the database. For exam-
ple, a rectangle is composed by line segments,
l,, I, I3, I, which records are stored in the position
1,2, 3, 4 of the database, repectively, so the edge
points of /, are all numbered 1; /,, 2, and so on.
Therefore, this numbering becomes the linkage be-
tween the object in the map and its corresponding
database. In addition, this aumbering realizes the
CSH.

4.2. Chromatographic search

The CSH is the realization of principle of object
orientation and principle of closeness. Because the
boundaries of objects in the map are numbered ac-
cording to their record indices in the databass, CSH
directly searches nearest objects on the map after
given an object, The process of CSH is like a radar
which spreads out signals in all directions from a
given point. When signals encounter an object, the
number of the object is reported. The CSH has the
following two merits:

(1) Polymorphism. The CSH is polymorphic be-
cause it can find objects of any types. The polymor-
phism of CSH is realized by maps. Although differ-
ent objects in databasses have different data types,
the type of their corresponding maps is integer array.
Therefore, CSH works on 2-D maps of homogeneous
type rather than on databasses of different types.

(2) Ommidirection. In a database, data items are
arranged in a certain order, However, Searching a
key which does not follow as certain order may take
O(n) comparisons, if the database has n records.
Otherwise, it takes O(» log ») to sort these items
again. Based on the principle of closeness, CSH
searches most related objecis in all directions on the
map, therefore the arrangment order of the data items
in the database is not important.

The time complexity of CSH on an N X N map is
O(N?) of it is executed on s serial computer. How-
ever, it is only O(N) if on a mesh-connected com-
puter.

4.3. Four procedures

There are four procedures in INFG., They are
initializeation, pre-p:ocessing, unification and plot-
ting. Their functions are describe as follows.

(1) Initialization: The first step of INFG is initial-
ization, The files regarding to imported compo-
nents and the exported object are opened, then
the database and maps components are installed.

(2) Pre-processing: The relationships among com-
ponents are extracted from the VISUAL pro-
gram. The control structure, and, or, or recur-
sive call in the VISUAL program, are translated
to C codes for unification.

(3) Unification: Unification is a process which de-
termines the values for variables. This procedure

* takes indexes provided by CSH, and access the

data in the database. It will assign at most k
values to a variable using the principle of close-
ness, therefore, the computation time is reduced.

(4) Plotting procedure: The output of the INFG
include a map, so there needs a procedure to
draw the boundary of objects. If some compo-
nents satisfy all of the pre-defined relationships,
then one of the described object is found. The
boundary points of the object are determined by
the boundary points of the satisfactory compo-
nents.

332 S.L. Chen et al. / Journal of Systems Architecture 43 (1997) 327-335

INFG applies the technique of dynamic program- plotting procedure and the number of the key com-
ming to locate the described object, and use the ponent. If an object is composed by m component
principle of closeness as a pruning technique, so the and a key component which has n instants in the

time complexity of INFG depends on CSH, the corresponding database, INFG will instantiate n hy-

AN
]
;"‘"\ -\
- \ o~
(d1)
AN /\
[N
e g
(d2)
A D ,
A\ AN .
\ \
N N N
- \ r-“"\
\ - - ®
(b3) (c3) (d3)
AN VAN
o o
. \q\ b \|\ N
(b4) (c4) (d4)

Fig. 4. A scquence of synthesized images with different Jevels of noise, (af) is original image with Gaussian noisc of standard deviation 2/
where i =1, 2, 3, 4. (bi), {ci) and (di} are results of edge detection, locating line segment, and locating rectangle in (ai), respectively.

S.L. Chen et al. / Journal of Systems Architecture 43 (1997) 327335 333

potheses to be verified. Each unification of a compo-
nent cails CSH a time, hence, the time complexity of
locating the object in an N X N image is O(nk X m*
X N), where k is the number of nearest neighbors
found by CSH pruning.

5. Experiments

In this section, we demonstrate the power of
VISUAL programs on image understanding. These
sample images are classified into two sets: a set of
synthesized images, and a set of real images with a

\' .
)8

FNEs
)

i i,

Brot

"whi®

EER

(a3)

stop sign. We use images of the first set to test the
performance of two VISUAL programs under differ-
ent noisy envirements. These programs will locate
line segments and rectangles, respectively. Images in
the second set are extracted from street scenes. Each
of these images contains a stop sign which is an
important landmark for robotic navigation. At the
end of this section, we will show the possible ambi-
guity while describing objects.

5.1. Synthesized image set

Figs. 4(ai), for i = 1 to 4, are synthesized images
with Gaussian noise of standard deviation 2'. and

TS 5L ek NIRLY s 430 4 .
AL b YIRS ey (A
P RA SR PRrtg " B

g .'..'4«,' & f 3
DEVE

254 i

@)

Fig. 5. (a!), (a2) and (a3) are real images with stop signs under different illumination. (bi), (ci) and (d) are results of edge detection,

locating line segment, and locating octagon, respectively.

334 8., Chen et al. / Journal of Systems Architecture 43 (1997) 327335

Figs. 4(bi) are the results of X? feature detector
with threshoid of crirical region of size 0.10 [12]. If
we apply the example VISUAL program shown in
the previous section, and apply the Mahalanobis
distance for the principle of closeness, broken line
segments in (b/) are connected, as in Fig. 4(ci). The
Mahalanibis distance which is also called the X2
statistic is the fundation of the ecidence combination
theory [12]. It can improve the perforemence of
Hough Transform which traditionally use edge points
as evidence, instead of X? statistic generated di-
rectly from hypothesis tests.

The VISUAL program in the Appendix can locate
rectangles which components are line segments. If a
rectangle is defined as four line segments which are
prependicular and connect to their neighbor except
the last one, the results are shown in Figs. 4{di).
This definition demonstrates the importance of the
relationships among objects. Unfortunately, ambigu-
ity also originates from the definition. We will dis-
cuss this topic later in Section 5 3

3.2. Stop sign set

Images in this set contain stop signs which are
important landmarks for robotic navigation. These
images are digitized from pictures taken from a
street scene under different illumination. For exam-
ples, these pictures are taken in the morning, after-
noon (facing the sun), and at night. We wrote a
program in VISUAL to locate stop sign candidates in

a street scene, Because octagons are rate in the
natural world, we treat the octagons as strong candi-
dates of stop signs.

An octagon is a polygon composed of eight line
segments, and each angle is 135 degree angles. We
encoded this definition into a VISUAL program.
Figs. 5(a2) and 5(a3) are extracted from the same
street scene as Fig. 5(al), but different illuminations
so that the intensities or their backgrounds are differ-
ent. For example, we were facing the sun wiile
taking picture in the afternoon. The background of
the stop sign is too bright that the out-ward boundary
lines of the stop sign are hard to be detected. The
outward boundary lines are broken in most cases, but
the inward ones still remains detectable.

Fig. 5(d3) is an interesting result. Two octagons
are found in the im=ge. Actually the small one is an
ellipse. The ellipse turns out to be an octagon after
the process of digitization and locating line seg-
ments. This result also shows that if the definition
for a stop sign candidate is an equilateral octagon,
then the rate of false position will be decreased.

5.3. Ambiguity in object descriptions

If a user does nnt define an object clearly and
precisely, the IFNG of VISUAL may locate wrong
objects. For example, if we define a triangle as three
line segments which connect each other, then the

Fig. 6. Ambiguity in object descriptions. (a) is the original image, (b) is the result of locating line segmeat. (c) and (d) are the resulis of two

VISUAL programs with different descriptions of triangle.

S.L. Chen et al. / Journal of Systems Architecture 43 (1997) 327-335 335

INFG gets two *‘triangles’’ from Fig. 6(a), as shown
in Fig, 6(c). These *‘triangles” show the problem
with this definition of triangle. After including the
condition that sum of internal angles is 180 degrees,
the real triangle is found, shown is Fig. 6(d). A deep
question is how to define an object precisely. This
question is related to cognition science, and is be-
yond the scope of this paper.

6. Conclusion

In this paper, we present on object-oriented and
declarative language, VISUAL, for image under-
standing task. The design of VISUAL is based on the
principle of closeness and principle of object orien-
wation. It is realized by the chromatographic search
on 2-D component maps, instead of searching on
database for unification. The inference engine of
VISUAL will open corresponding databases and im-
ages according to given description, then perform
unification. Hence, VISUAL is the integration of
programming language, database, and image. It is
also a tool to build a hierarchical vision system and
combination of homogeneous evidence.

Appendix. A VISUAL program for locating rect-
angles

object Segment(11, 12, 13, 14) import _from
(level _2)
object Rec rectangle export _to (level _3)
type [typedef struct_Rec { Segment sl, s2, s3, s4;
int degree; double statistic; } Rec;]
begin
rectanglefs. 11. 12, _13, _14] -

start(_11):
Perpendicular(" 11, _12),
Perpendicular(” 12, _13),
Perpendicular(” 13, _14),
Perpendicular(” 14, _11);
end

References

[1) C-H. Chen and P.G. Mulgaonkar, Automatic vision pro-
gramming, CVGIP-Image Understanding 55 (1992).

[2] R.O. Duda and P.E. Han, Puttern Classification and Scene
Analysis (John Wiley and Sons, New York, 1973).

(3) HS. Don and K.S. Fu, A syntactic method for image seg-
mentation and object recognition, Pattern Recoghition 18
(1985),

(4] K.S. Fu, Syntaciic Pattern Recognition (Prentice-Hall, Engle-
wood Cliffs, NJ, 1982).

[5] B. Bhanu, Cad-based robot vision, IEEE Computer 20
(1987),

(6] P. Flynn and A, Jain, Bonsai: 3-d object recognition using
constrained search, PAMI 13 (1991).

[7) D.M. McKeown, W. Harvey and L. Wixson, Automating
knowledge acquisition for aerial image interpretation, CVGIP
46 (1989).

(8] B.G. Ratchelor, Intelligent Image Processing in Prolog
(Springer, London, 1991).

[9] K. Fuchi, Launching the new era, in: Proc. Internat, Conf.
Fifth Generation Computer System, 1COT, 1992,

[10] C. hunsen and T. Henderson, Toward the automatic genera-
tion of recognition strategics, in: Proc. 2nd Internat. Conf.
an Computer Vision, IEEE (1988) 275-279,

{11] Keezuka and T, Kanade, A technique of pre-compiling rela.
tionship between lines for 3d object recognition, in: Proc.
IECE Internat. Workshop on Industrial Application of Ma-
chine Vision and Machine Intelligent (1987) 144-149,

[12] ER. Chuang and D.B. Sher, X2 test for feature detection,
Puttern Recognition {1992).

