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In our previous researches, we proposed the artificial chromosomes with genetic algorithm (ACGA) which
combines the concept of the Estimation of Distribution Algorithms (EDAs) with genetic algorithms (GAs).
The probabilistic model used in the ACGA is the univariate probabilistic model. We showed that ACGA is
effective in solving the scheduling problems. In this paper, a new probabilistic model is proposed to cap-
ture the variable linkages together with the univariate probabilistic model where most EDAs could use
only one statistic information. This proposed algorithm is named extended artificial chromosomes with
genetic algorithm (eACGA). We investigate the usefulness of the probabilistic models and to compare
eACGA with several famous permutation-oriented EDAs on the benchmark instances of the permutation
flowshop scheduling problems (PFSPs). eACGA yields better solution quality for makespan criterion when
we use the average error ratio metric as their performance measures. In addition, eACGA is further inte-
grated with well-known heuristic algorithms, such as NEH and variable neighborhood search (VNS) and it
is denoted as eACGAhybrid to solve the considered problems. No matter the solution quality and the com-
putation efficiency, the experimental results indicate that eACGAhybrid outperforms other known algo-
rithms in literature. As a result, the proposed algorithms are very competitive in solving the PFSPs.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the Estimation of Distribution Algorithms
(EDAs) have been one of the major evolutionary computing para-
digms applied in solving combinatorial optimization problems
(Ceberio, Irurozki, & Lozano, 2012; Larrañaga & Lozano, 2002).
EDAs offer promising solutions that explicitly build a probabilistic
model based on the information extracted from previous searches.
Instead of using the crossover and mutation operators, EDAs
generate new solutions by sampling from the probabilistic model
(Larrañaga & Lozano, 2002). Through the probabilistic models
characterizing the solution space, EDAs are good at solving hard
problems when we do not have prior knowledge of the problems.

In order to improve the performance of EDAs, some recent at-
tempts have been made to combine EDAs with the crossover and
mutation operators (Chang, Chen, & Fan, 2008; Pena et al., 2004).
The main characteristic of these algorithms is that EDAs alternate
with GAs in the evolutionary progress. They showed that the
ll rights reserved.
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synergy of EDAs with genetic operators produces better solution
quality. Chen, Chen, Chang, Zhang, and Chen (2010) demonstrated
why the hybrid framework is superior than we use EDAs or GAs
alone. The reason is that although EDAs improve the solution qual-
ity efficiently in first few runs, the loss of diversity grows very fast
as more iterations are run (Branke, Lode, & Shapiro, 2007; Chen,
Chang, Cheng, & Zhang, 2012; Shapiro, 2006). Because GAs explore
the solution space by using the crossover and mutation genetic
operators, they supply broader diversified chromosomes into the
population than EDAs. By combining these two approaches, EDAs
and GAs compensate for each other’s disadvantages. In the re-
search of Chang et al. (2008), artificial chromosome with genetic
algorithms (ACGA) makes a good example to demonstrate the
combination of EDAs with genetic operators yields better solution
quality.

ACGA applied an univariate probabilistic model in the algorithm
while bivariate or multivariate probabilistic models was not con-
sidered. Because the use of high order interactions in probabilistic
model may generate more sophisticated results among the variable
interactions (Bengoetxea, Larrañaga, Bloch, Perchant, & Boeres,
2002; Bosman & Thierens, 2001; Pelikan, Tsutsui, & Kalapala,
2007), ACGA may not capture the problem structure well when
there exists variable interactions. Given that the scheduling
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problems have the variable interactions in nature, this paper at-
tempts to integrate higher order probabilistic models with ACGA
to enhance the solution quality.

We extend our previous study in ACGA and propose an ex-
tended artificial chromosome with genetic algorithms (eACGA) to
deal with the intractable combinatorial optimization problems by
using both the univariate and the bi-variate statistic information.
To be more specifically, the two statistic models are based on a fre-
quency information of a variable and the linkage between two
variables, respectively. It is the major difference between eACGA
with previous EDAs because most EDAs could use only one statistic
model. Moreover, in order to provide a comparable result, NEH, a
well-known heuristic approach for flowshop scheduling problems,
and a famous local search algorithm, i.e., variable neighborhood
search (VNS), are both employed in the eACGA. The resultant algo-
rithm is called eACGAhybrid. To evaluate the performance of the the
proposed algorithms, they are compared with several famous per-
mutation-oriented EDAs and some EAs in literature.

Contributions of this work: The probabilistic model used in EDAs
directly impacts its performance (Lozano, Larranaga, Inza, &
Bengoetxea, 2006). The importance of this research is to propose
new probabilistic models which consider both univariate and bi-
variate statistic information. This characteristic is distinguished
from previous EDAs because most EDAs employed just one statistic
information. These probabilistic models could represent better
individual information for EDAs. There are two researches based
on similar idea (Jarboui, Eddaly, & Siarry, 2009; Pan & Ruiz, 2012),
however there are some major differences among these three ap-
proaches. The probabilistic model and learning strategy of eACGA
are quite different from theirs. Finally, according to the latest
review of EDAs in permutation-based combinatorial problems
(Ceberio et al., 2012), EDAs have not been extensively developed
in this direction. This work is thus of importance in the area of EDAs
when it comes to the permutation problems.

The rest of the paper is outlined as follows: Section 2 is the
problem definition of the PFSPs for the makespan criterion, Section
3 describes a detailed explanation of the eACGA, and Section 4 pre-
sents experimental results on the performance of the proposed
algorithms in treating the permutation flowshop scheduling prob-
lem to minimize the makespan. Finally, Section 5 draws a conclu-
sion of this research.
2. Problem statements

The PFSPs to minimize the makespan can be defined as follows:
Suppose there are n jobs and m machines. Let p(i, j), 1 6 i 6 n,

1 6 j 6m, be the processing time of job i on machine j and
p = (p1, . . . ,pn) be a job permutation (i.e., processing order of the
jobs). Then the completion times C(pi, j) are calculated as follows:

Cðp1;1Þ ¼ pðp1;1Þ ð1Þ
Cðpi;1Þ ¼ Cðpi�1;1Þ þ pðpi;1Þ for i ¼ 2; . . . ; n ð2Þ
Cðp1; jÞ ¼ Cðp1; j� 1Þ þ pðp1; jÞ for j ¼ 2; . . . ;m ð3Þ
Cðpi; jÞ ¼ maxfCðpi�1; jÞ;Cðpi; j� 1Þg þ pðpi; jÞ

for i ¼ 2; . . . ;n; j ¼ 2; . . . ;m: ð4Þ

The makespan is

CmaxðpÞ ¼ Cðpn;mÞ: ð5Þ

The objective is to find a permutation p⁄ that minimizes
Cmax(p). The compared algorithms are used to solve the PFSPs for
the makespan criterion. We collect the average error ratio (ER)
because it is often used to evaluate the performance of algorithms
applied to deal with the PFSPs. The error ratio of a solution Xi gen-
erated by an algorithm is calculated as follows:
ERi ¼
CmaxðXiÞ � Ui

Ui
; ð6Þ

Where Ui is the makespan value of the best known or optimal
solution for PFSPs. When different researches applied the Ui, they
should employ the same best found objective value. Thus it pro-
vides a baseline for comparisons.

3. Methodology

The univariate probabilistic model used by ACGA assumed that
there are no dependencies between/among variables. However,
some researches pointed out when variable interactions exist,
EDAs may employ the bivariate or even the multivariate probabi-
listic models (Bengoetxea et al., 2002; Bosman & Thierens, 2001;
Pelikan et al., 2007). Because the scheduling problems have the
variable interactions in nature, the motivation is to let the pro-
posed algorithm integrate the bi-variate probabilistic model to en-
hance the solution quality.

In order to capture the information of variable interactions, we
have taken the bivariate probability model into consideration. That
is, eACGA extends from the ACGA, which collects not only the order
information of the job in the sequence but also the variable inter-
actions of the jobs. As a result, eACGA could extract the parental
information by using the univariate probability model and bivari-
ate probability model simultaneously.

In addition to the bivariate probabilistic model, some heuristic
approaches are also quite helpful when dealing with the schedul-
ing or the sequencing problems. First of all, NEH, a well-known
heuristic in flowshop scheduling problems with the minimization
of makespan, is utilized to generate a single chromosome in the
population initialization stage.

Secondly, a neighborhood search method is applied in eACGA to
further improve the solution quality. Local search provides better
exploiting information for realistic problems because it generally
can be computed very fast in solving large problems (Nareyek,
2001), The variable neighborhood search (VNS) is very useful as
mentioned by Mladenovic and Hansen (1997), Hansen and Mlade-
novi (2001) and Jarboui et al. (2008), therefore it is employed to
further improve the solution quality of eACGA. The new algorithm,
i.e., eACGA combined with NEH and VNS, is named eACGAhybrid in
short.

The following Section 3.1 explains the proposed algorithm in
detail. Because the univariate and bivariate are the cores of EDAs,
they are further explained in Section 3.2. After that, Section 3.3
demonstrates a 5-job instance to explain how to generate an off-
spring by the probabilistic model. Finally, we illustrate the proce-
dures of the VNS in the last subsection.

3.1. The procedures of eACGA

The major procedures of eACGA include initializing population,
selecting of better chromosomes, and deciding whether EDAs or
genetic operators are run. In addition, VNS is an optional method
which may improve a new solution in the search. After that, a
replacement strategy is used and the stopping criterion is tested.
The framework of eACGA is depicted in Fig. 1.

We describe the methods in the following steps.

Step 1: Initialization
We initialize the population consisting of a number of
chromosomes. A chromosome represents a processing
sequence for the scheduling problem. Each chromosome
is generated randomly. In order to improve results, some
researches employ heuristic algorithms to generate bet-
ter initial solutions. For example, NEH is considered to



Fig. 1. The framework of eACGA.
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generate a single chromosome in eACGA. On the other
hand, we also have to initialize the probabilistic models
used in eACGA. Regardless whether the univariate or the
bivariate probabilistic model is used, each Pi[i](t) is ini-
tialized to be 1

n, where n is the number of jobs and Pi[i](t)
is the probability of job i in position [i] in a promising
solution.

Step 2: Selection
Evolutionary algorithms attempt to select more feasible
solutions that corresponds to their objective values. The
selection operator chooses better chromosomes to be
survived. For the purpose of simplicity, the binary tour-
nament operator is employed, which selects the better
chromosomes with lower objective values in this mini-
mization problem.

Step 3: Decision
Two parameters control whether the EDAs or GAs are run,
startingGen and interval. The first parameter startingGen is
to determine the starting time of generating artificial
chromosomes. The main reason is that the probabilistic
model should be only applied to generate better chromo-
somes when the searching process achieves a more stable
state. The other important parameter interval sets the
period during which the artificial chromosomes are gen-
erated. As a result, the algorithm alternates EDAs and
genetic operators in the whole evolutionary progress.
When EDAs are executed, they go through the process
of constructing the probabilistic models, learning of
parental distribution, and then sampling new offsprings
from probabilistic models. On the other hand, the
algorithm produces offsprings by using the elite GAs.

Step 4: Variations
The whole procedure is described from Step 4.1.1 to Step
4.1.3. On the other hand, genetic operators contain the
crossover and mutation operator which are described
in Step 4.2.1 and Step 4.2.2, respectively.
Step 4.1: eACGA segment
Step 4.1.1: Modeling

The univariate probabilistic model and the bivariate
probabilistic models are built while we run the
EDAs. The former one represents the importance
of the order of the jobs in the sequence. The bivariate
probabilistic model illustrates the building blocks in
the populations. More step by step details will be
presented in Section 3.2.

Step 4.1.2: Learning
As in PBIL (Baluja & Davies, 1998), we update the
two probabilistic models in an incremental learning
method. Furthermore, the learning rate determines
the importance of the current and historical proba-
bility information. The probability learning models
of the univariate and bivariate probabilistic models
are shown in Eqs. (11) and (12), respectively.
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Step 4.1.3: Sampling
Now that the two probabilistic models have been
established, the actual procedure implemented in
the optimization algorithm needs to be specified.
The goal is to devise a strategy to form the off-
spring populations reflecting the two probabilistic
models. For each position in the sequence of a
new individual, first we select a job randomly as
the first position, then according to the multiplica-
tion of two probabilistic models, proportional
selection fills out the other sequence of a new
individual.
Step 4.2: Elite GA segment
Step 4.2.1: Crossover
This study applies the two-point central crossover

operator Muruta and Ishibuchi (1994) to mate
two randomly selected chromosomes. Crossover
rate (Pc) decides whether the chromosome is
mated with others.

Step 4.2.2: Mutation
Mutations occur inside the chromosome if a ran-
dom probability value is lower than the mutation
rate (Pm). The swap mutation operator is used in
our experiments. When we decide to do the muta-
tion, the genes of the two random positions are
swapped.

Step 5: Variable neighborhood search (optional)
Fig. 1 also illustrates that the optional procedure of a
VNS could be executed in eACGA. A probability variable
Penh controls when the VNS starts to improve a new
solution. More information for VNS is described in Sec-
tion 3.4.

Step 6: Replacement
In order to improve the population quality and maintain
the population diversity, the better offspring replaces
the worst individual in the parent population. Further-
more, the offspring must be different from any one of
the parent population.

3.2. Establishing probabilistic models

Because eACGA employs both univariate and bi-variate proba-
bilistic models while most EDAs did not apply more than one mod-
el, we define them in this section. Moreover, we explain how to
utilize the two statistics in eACGA.

To build the probabilistic models, a set of M better chromo-
somes X1, X2, . . ., and XM are selected at the current generation t.
In principle, any selection method such as proportional selection
and tournament selection can be used for this purpose. For the sake
of simplicity, we adopt the 2-tournament selection in our method.
Then, Xk

i½i� is a binary variable in chromosome k (See Eq. (7)) which
is used to define the univariate model later.

Xk
i½i� ¼

1 if job i before or at position½i�
0 Otherwise

�
; i¼ 1; . . . ;n; k¼ 1; . . . ;M

ð7Þ

where the domain of the position [i] is also from i = 1, . . ., n and n
is the number of jobs. After we sum up the the statistic informa-
tion from all M chromosomes to the Xk

i½i�, we obtain the univariate
model /i[i](t) in Eq. (8) which represents the number of times that
job i before or at position [i] at the current generation t. This uni-
variate model shows the importance of the jobs in the sequence
and it was also used in Jarboui et al. (2009) and Pan and Ruiz
(2012).
/i½i�ðtÞ ¼
XM

k¼1

Xk
i½i�; i ¼ 1; . . . ;n ð8Þ

When it comes to the bi-variate probabilistic model, it is the
same that we define a new binary variable vk

i0 iðtÞ in Eq. (9). This
variable indicates whether job i is immediately after the job i0 in
chromosome k.

vk
i0 iðtÞ ¼

1 if job i is next to the job i0

0 Otherwise

(
; i¼ 1; . . . ;n; k¼ 1; . . . ;M

ð9Þ

where i – i0. After we summarize the statistic information of vk
i0 iðtÞ

from the M chromosomes, the bi-variate statistic information
wi0 lðtÞ could be obtained in Eq. (10). wi0 iðtÞ indicates the number of
times that job i immediately after the job i0.

wi0 iðtÞ ¼
XM

k¼1

vk
i0 i; i ¼ 1; . . . ;n; i – i0; k ¼ 1; . . . ;M ð10Þ

/i[i](t) and wi0 iðtÞ model (in Eqs. (8) and (10)) are built so far.
According to the Step 4.1.2 about the updating algorithm by PBIL,
the two statistics with learning can continue to modify the search
space and then improve the performance. Eqs. (11) and (12) set the
learning approach. In this research, two learning rates, k/ and kw,
are decided by Design-of-Experiment (DOE).

/i½i�ðtÞ ¼ /i½i�ðtÞ � ð1:0� k/Þ þ /i½i�ðt � 1Þ � k/; k/ 2 ð0;1Þ ð11Þ
wi0 iðtÞ ¼ wi0 iðtÞ � ð1:0� kwÞ þ wi0 iðt � 1Þ � kw; kw 2 ð0;1Þ ð12Þ

After /i[i](t) and wi0 iðtÞ learn from previous search, we consider
how to form the probabilistic models which utilize the both sta-
tistics. Let Pi[i](t) be the probability value of the job i at position
[i]. This research likes to select a job i which has higher probabil-
ity value than other jobs when the univariate and bi-variate sta-
tistic information are used. To do this, /i[i](t) is multiplied by
wi0 iðtÞ which is proportioned to the summarized probability values
of all unscheduled jobs that could be assigned at positions [i]. In
addition, it is noticeable that when we select a job at the first
position, wi0 iðtÞ could be zero in the most cases while only few
wi0 iðtÞ > 0. It causes only few jobs could be selected at the first
position for producing offspring. The population diversity is
decreased easily in this case (Pan & Ruiz, 2012). As a result, Pan
and Ruiz (2012) use the univariate model to select a job at the
first position.

It is reasonable to use the univariate model at [i] = 0; however,
this research suggests that a random value with the uniform distri-
bution is used. We investigate the performance difference of the
two approaches in our experiment section. As a result, Pi[i](t) is
defined as follows.

Pi½i�ðtÞ ¼
Uð0;1Þ ½i� ¼ 1
/i½i�ðtÞ � wi0 iðtÞ=

P
l2X
ð/l½i�ðtÞ � wi0 lðtÞÞ ½i� ¼ 2;3; . . . ;n

8<
:

ð13Þ

where i = 1, . . ., n and X is the set of the unscheduled jobs. A propor-
tional selection method is used to select a job from X and then set it
to the position [i]. The following pseudo code presents the assign-
ment procedures.
S: A set of shuffled sequence which determines the sequence
of each job being assigned a position.
X: The set of unassigned jobs.
J: The set of assigned jobs. J is empty in the beginning.
h: A random probability is drawn from U(0,1).
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i: A selected job by proportional selection
k: The element index of the set S
1: S shuffled the job number [1 . . .n]
2: J U
3: while k – U do
4: h U(0,1)
5: Select a job i satisfies h 6 Pi[i](t), where i 2X
6: J(k) i
7: X Xni
8: S Snk
9: end while
To conclude the characteristics of eACGA with previous EDAs,
eACGA employs both univariate and bi-variate statistics while
most EDAs use only one probabilistic model. Secondly, the genetic
operators alternative with the probabilistic models which may get
rid of the diversity loss in EDAs. When eACGA is compared with the
works of Jarboui et al. (2009) and Pan and Ruiz (2012), eACGA uses
the learning algorithms to update the probabilistic models. In
addition, the bi-variate model presented in eACGA avoids the
disruption of the similar blocks of jobs within the individuals’
sequences due to the bivariate model used by Jarboui et al.
(2009) only considers the blocks in the same positions. When the
blocks are disrupted, the bivariate model may not work well (Ruiz,
Maroto, & Alcaraz, 2006). Apart from that, our approach of setting
the first position in the sequence might be better than theirs owing
to the diversity concern. The comparisons of the univariate model
used by Pan and Ruiz (2012) and random value approach proposed
in this paper are shown in Section 4.1.

3.3. Generating offsprings by the parental distribution

To demonstrate the procedures of the eACGA, we draw a 5-jobs
instance as an example. Suppose there are ten promising solutions
which are selected to build the probabilistic models, as shown in
Fig. 2. We accumulate location and interaction information from
these chromosomes to form the univariate and bivariate probabi-
listic models. The right-hand side of Fig. 2 shows that there are
two job 1, two job 2, two job 3, one job 4, and three job 5 on posi-
tion 1 in the location-based information matrix.

In the bivariate probabilistic model, there are six times that job
2 is next to job 1, two times that job 1 is in front of job 3, and 0
occurrence of the job 4 and job 5 is right after the job 1. The zero
value in the bivariate matrix forbids the jobs to be put into to-
gether in any case. Since we should avoid this condition, the zero
Fig. 2. To collect gene and interaction information an
value is corrected to 1
n where n is the number of selected chromo-

somes. After we have the two probabilistic models, we are going to
sample new solutions.

To generate a diversified sequence, the first position does not
take the probabilistic models. We suppose job 3 is selected as
the first job in the sequence. Then, when we assign a job at position
2, we should take the two probabilistic models into consideration.
These values doing multiplication and normalization can produce
probabilistic table of position 2 as shown in Fig. 3. The correspond-
ing probability for job 1 is 0.2939; job 2 is 0.0009; job 3 is none be-
cause it has been selected, and so on. After the assignment
probability is determined, the job will be selected by a roulette
wheel selection method based on the probability of each job on
this position.

According to the probability selection method, we assume job 5
is selected, then job 5 is assigned to position 2. The position 3 is the
next one to be assigned, an updated probabilistic matrix is shown
in Fig. 3. Again, following the same procedure, the probability of
each job in position 3 is calculated. Then, a roulette wheel selection
method will select a job based on the probability of each job. Con-
sequently, all jobs will be assigned a specific position. Finally, a
new job sequence according to the ordinal and dependency matrix
is generated.
3.4. VNS procedures

In order to improve the solution quality, VNS is hybridized into
the searching process in this research since many researches have
proved that VNS is effective in solving the PFSPs (Jarboui et al.,
2009; Tasgetiren, Liang, Sevkli, & Gencyilmaz, 2007). In this paper,
we have included the version of Jarboui et al. (2009) in our re-
search. Meanwhile, the combination of the eACGA and VNS is
named eACGAhybrid in this paper.

In the beginning of the VNS procedures, a VNS parameter Penh
decides the probability to execute the VNS in the main procedure
of eACGAhybrid. We generate a random probability and to test
whether it is less than or equal to the Penh. If the random
value is less than or equal to the Penh, VNS procedure is thus exe-
cuted and a current best solution xbest is selected to do the
perturbation.
d to con
xbest: A selected elite chromosome.
x1: We change the neighborhood structure of xbest.
x2: A local optimal improved by a swap local search
operator.
vert into location and interaction matrix.



Fig. 3. Example of an artificial chromosome.

Table 1
Parameter settings of eACGA.

Method Settings

eACGA Starting generation = 0.5 � (total generations)
Interval = 0.02 � (total generations)
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x02: A local optimal generated by an insertion local search
operator.
F(xbest): The objective value of the solution xbest.
k: The current number of VNS iteration
kmax: The maximum number of VNS iteration
Crossover rate = 0.9
Mutation rate = 0.4
ordinal probability learning rate = 0.7
dependent probability learning rate = 0.1
Population size = 400

Common settings Elitism rate = 10%

Table 2
ANOVA table of the model selection.

Source DF SS Mean
square

F value P value

Instance 109 76,106,350,523 698,223,399 980,292 <.0001
methods 1 54,662 54,662 76.75 <.0001
1: k 1
2: while k < kmax do
3: x1 generate a neighborhood solution of xbest

4: x2 swapLocalSearch (x1)
5: x02  insertionLocalSearch (x2)
6: if F x02

� �
< FðxbestÞ then

7: xbest  x02
8: k 1
9: else
10: k k + 1
11: end if
12: end while
Instance ⁄ method 109 246,287 2260 3.17 <.0001
Error 6380 4,544,222 712
Corrected total 6599 76,111,195,694
The number of kmax is set as the stopping criterion of the VNS.
Because the number of kmax is dependent on the benchmark in-
stance, we determine this parameter by design-of-experiment.
In the insert loop of VNS, a new solution is created by the shaking
procedure. The neighborhood structure comprises steps of ex-
change, insert, and exchange to variate a current best solution.
By using this method suggested by Sevkli and Aydin (2009), we
thus create and further improve the new solution x1 by a swap
local search. The resultant solution of swap local search is x2 that
might be improved by a swap local search. Then, an insertion lo-
cal search acts on the solution x2 so that it generates a new solu-
tion x02. The final step is to compare the fitness of the solution x02
with the current best solution xbest. If the new solution x02 is better
than xbest, it replaces the xbest and k is reset to one. Otherwise, k is
increased by one. Through the systematic exploration and exploi-
tation, VNS could improve the performance of the proposed
eACGAhybrid.
4. Computational results

In order to evaluate the performance of the eACGA and eACGA-
Hybrid, we conducted extensive experiments to test them on permu-
tation flowshop scheduling problems in minimizing makespan.
They were implemented by Java 1.6 SDK on Windows 2003 server
with Intel Xeon 3.2 GHz CPU. We selected the probabilistic models
used in the proposed algorithm by Design-of-Experiments (DOE) in
Section 4.1. Then, eACGA was compared with others in literature.
The comparisons are classified into two categories. The first cate-
gory is the EDAs approaches where Ceberio et al. (2012) examined
numerous famous permutation-oriented EDAs to test the flowshop
scheduling problems in Section 4.2. The other type is EAs and
hybrid algorithms in Section 4.3. Both experiments used the
well-known flowshop instances given by Taillard (1993). These
experiment results are shown in the following sections.
4.1. DOE on the selection of the probabilistic models

Section 3.2 discussed two possible alternatives which could be
used in eACGA. The first approach is to generate the first job by
an univariate probabilistic model and the second one is to generate
the probability value by random. The two approaches in eACGA
were test on the 110 Taillard flowshop instances, including the
20 jobs with 5 machines to 200 jobs with 20 machines. In addition,
they took the same parameter settings (See Table 1) and use a stop-
ping criterion set by Tasgetiren et al. (2007) was to examine
500 � 2 � n solutions where n is the number of jobs. The ANOVA
results was shown in Table 2.

In this ANOVA table, the source indicates factors and combina-
tions of factors. In our case, Instance and Method are factors. DF rep-
resents the degree of freedom and SS is the sum of squares. The
mean square is equal to SS divided by DF. If the Pr-value of a factor
(source) is less than 0.05, it means that there is a significant differ-
ence in this factor (Montgomery, 2008). Due to Pr-value of the
methods is less than 0.0001, there exists a significant difference
between the two methods. We further conducted the Duncan
grouping test to differentiate the performance of these algorithms
(See Table 3).

In Table 3, Mean is the average value and N is the number of
the observations. If two algorithms share the same alphabet (i.e.,
they are in the same group), there is no significant difference be-
tween them. Otherwise they are significantly different (Montgom-
ery, 2008). It is an evident from the Duncan grouping test that the
two approaches were significantly different in their performance
and the generating probability value by random performed



Table 3
Duncan grouping test at model selection (Univariate: Univariate model is used.
Random: Generating probability value by random).

Duncan grouping Mean N Methods

A 4997.4633 3300 Univariate
B 4991.7076 3300 Random

Table 4
The parameter settings for the permutation-oriented EDAs and eACGA.

Algorithm Parameter setting value

Common
setting

Population size = 10 � n
Stopping criterion = 100 � n(maximum number of
generations)
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significantly better than the univariate model is used when we
like to set the first job in the sequence.

These results revealed the univariate model might be influenced
by some salient genes which dominated the first position when the
population was converged during the evolutionary progress
(Chang et al., 2008). The probabilistic models could not sample
diversified offspring and EDAs could be trapped in local optimal.
As a result, the random value is suggested when we design an EDAs
which considers the univariate and bi-variate probabilistic models
when we select a job at the first position. eACGA and eACGAHybrid

applied this approach in the following experiments.

4.2. Experiment results of permutation-oriented EDAs

Many well-known EDAs selected in Ceberio et al. (2012) and
they were applied for comparison. These algorithms were UMDA
(Larrañaga, Etxeberria, Lozano, & Peña, 2000), MIMIC and EBNABIC

in Bengoetxea et al. (2002), Tree (Pelikan et al., 2007), UMDAc

and EGNAee in Larrañaga and Lozano (2002), IDEA–ICE (Bosman
& Thierens, 2001), EHBSAWT (Tsutsui, 2009), EHBSAWO (Tsutsui &
Miki, 2002), NHBSAWT (Tsutsui, 2006), NHBSAWO (Tsutsui, 2006),
and REDAUMDA and REDAMIMIC in Romero and Larrañaga (2009).
Table 5
Average error ratio evaluation of the permutation-oriented EDAs and eACGA to test on Ta

UMDA MIMIC EBNABIC TREE UMDAc EGNAee IDEA–ICE EHB

ta001 1.16 1.55 1.12 1.64 4.68 4.08 1.96 0.3
ta002 0.96 0.67 1.40 1.16 3.90 3.02 0.90 0.0
ta003 3.95 3.36 3.27 4.18 16.47 15.58 5.06 1.3
ta004 1.29 2.01 1.28 3.74 13.03 12.53 4.83 0.1
ta005 1.26 1.22 1.33 1.86 9.15 8.87 3.18 0.5
ta006 1.28 1.93 1.26 2.81 12.68 11.56 4.45 0.0
ta011 2.47 2.78 3.06 4.92 14.83 14.02 6.06 0.5
ta012 3.30 3.41 2.77 5.65 13.90 13.12 6.12 0.8
ta013 4.55 3.33 4.06 5.06 13.29 10.52 6.66 1.1
ta014 2.81 2.47 3.17 5.39 16.26 16.30 6.31 0.3
ta015 3.47 4.16 3.60 5.31 16.94 17.35 7.07 0.4
ta016 2.96 2.71 2.63 4.52 17.22 16.11 5.66 0.5
ta041 5.37 4.43 6.41 8.09 17.59 16.57 8.50 3.5
ta042 5.14 5.02 4.63 8.35 18.32 18.33 9.19 3.5
ta043 4.94 5.07 4.89 8.59 19.65 18.90 10.69 4.1
ta044 4.34 2.61 4.09 5.07 14.05 11.46 7.19 1.8
ta045 6.30 4.00 6.01 7.92 17.00 12.94 8.43 3.7
ta046 5.13 3.85 6.26 6.61 16.41 14.70 6.88 2.6
ta081 13.13 6.21 13.28 10.72 21.20 20.41 12.51 8.1
ta082 11.38 4.18 11.53 8.60 19.19 17.66 11.55 6.5
ta083 10.83 4.82 10.82 8.45 18.27 17.27 10.59 6.4
ta084 10.73 4.03 11.08 7.42 17.77 15.54 9.79 5.8
ta085 11.95 4.82 11.68 8.84 18.09 16.48 11.07 6.8
ta086 10.31 5.50 11.13 9.24 18.61 18.36 11.47 6.8

Avg. 5.38 3.51 5.45 6.01 15.35 14.24 7.34 2.7

Bold values represent the best performance of each instance among all algorithms.
The four instance sets of the flowshop benchmarks were col-
lected, such as the tai20 � 5, tai20 � 10, tai50 � 10, tai50 � 20,
and tai100 � 20. In addition, the first six instances from each set
were used. So the amount of the 24 instances were employed to
test the EDAs. To make a fair comparison, all the EDAs (include
the proposed eACGA) used the same population size and genera-
tions. The following Table 4 is the parameter settings of these
EDAs. eACGA remain applied the same settings (except the popula-
tion size is changed to 10 � n) in Table 1.

These 14 algorithms ran 10 times on these instances and then to
collect the average error ratio (ER). The best known (or optimal
solution) used in Eq. (6) for Taillard instances was the last version
in year 2005. The complete results of all EDAs were listed in Table 5.

Through the 24 instances in Table 5, the lowest average error
ratio in each instance was marked in boldface. The results pre-
sented that eACGA got 16 lowest average error ratio in the 24 in-
stances. EHBSAWT performed well out of the 7 instances and
NHBSAWT got only one instance that outperformed others. In addi-
tion, the total average error ratio of eACGA which was the lowest
value among all the permutation-oriented EDAs. The results
showed eACGA is quite competitive when it was compared with
existing permutation-oriented EDAs.

It is interesting for eACGA to compare the performance with
them. There are two major differences between eACGA and these
EDAs. The first reason could be that pure EDAs may encounter
the problem of diversity loss during the evolutionary progress
(Branke et al., 2007; Chen et al., 2010; Shapiro, 2006). Diversity loss
caused the probabilistic model no longer generating diversified off-
springs. Due to eACGA gains the diversified population from the
genetic operators, it enables the proposed algorithm to generate
better solutions without staying at the local optimal. Secondly,
eACGA considered the univariate together with bi-variate statistics
while most EDAs may just utilize one probabilistic model. It is thus
important to take the diversity into account and using not only one
statistic when we design a new EDAs.

Because it is not sufficient that we just compared eACGA with
some existing EDAs, the proposed algorithms (eACGA and
eACGAHybrid) were further compared with some meta-heuristics in
the next section.
illard instances.

SAWT EHBSAWO NHBSAWT NHBSAWO REDAUMDA REDAMIMIC eACGA

0 1.41 1.27 1.49 1.49 2.79 1.16
5 0.49 0.27 0.31 1.21 3.73 0.13
0 3.04 0.71 1.23 5.26 14.14 0.57
9 1.81 0.22 1.17 4.18 10.46 0.56
1 1.17 0.96 1.17 2.78 5.42 0.40
0 1.26 0.53 1.13 3.22 8.05 1.13
3 1.52 0.58 1.11 5.92 7.88 0.46
8 3.09 0.81 1.16 6.36 8.83 0.50
0 2.08 1.18 1.77 7.27 6.76 0.90
7 2.27 0.65 1.26 7.22 11.31 0.76
4 0.99 0.58 1.23 5.88 17.28 0.67
5 1.56 0.73 1.32 3.78 13.80 0.63
0 9.18 3.74 4.51 11.56 12.95 2.97
2 8.97 3.88 4.98 11.42 16.47 2.95
6 10.68 4.29 4.25 12.63 14.92 3.18
1 7.20 1.72 1.66 8.70 8.09 1.13
2 9.34 3.58 2.42 11.26 11.87 2.75
9 7.47 2.90 4.22 10.77 10.63 2.36
8 14.51 7.84 8.80 20.88 20.71 5.00
1 13.05 5.84 6.35 19.80 19.56 3.18
6 12.26 5.81 6.44 18.99 17.81 3.25
2 11.98 5.15 5.32 17.93 17.71 2.85
0 12.45 6.52 7.40 18.89 18.21 4.04
1 12.43 6.68 7.45 19.17 18.68 3.82

6 6.26 2.77 3.26 9.86 12.42 1.89



Table 6
Parameter settings of the implemented algorithms for solving permutation optimi-
zation problems: SGA, ACGA, eACGA and eACGAHybrid.

Method Settings

SGA Crossover rate = 0.9
Mutation rate = 0.3
Population size = 500

ACGA Starting generation = 0.7 � (total generations)
Interval = 0.1 � (total generations)
Crossover rate = 0.9
Mutation rate = 0.5
Population size = 500

eACGA and eACGAHybrid Starting generation = 0.5 � (total generations)
Interval = 0.02 � (total generations)
Crossover rate = 0.9
Mutation rate = 0.4
Ordinal probability learning rate = 0.7
Dependent probability learning rate = 0.1
Population size = 400

Common settings Elitism rate = 10%

Y.-M. Chen et al. / Computers & Industrial Engineering 62 (2012) 536–545 543
4.3. Empirical results of evolutionary algorithms and hybrid
algorithms

Some EAs and hybrid algorithms were tested on the 120 Taillard
flowshop instances, including the 20 jobs with 5 machines to 500
jobs with 20 machines. Each instance was replicated 30 times on
the compared algorithms. They were the SGA (Chang et al.,
2008), ACGA (Chang et al., 2008), PSOSPV (Tasgetiren et al., 2007),
PSOVNS (Tasgetiren et al., 2007), H � CPSO (Jarboui et al., 2008),
and DDE (Pan, Tasgetiren, & Liang, 2008). The brief introduction
of them were discussed as follows:
� SGA: A standard genetic algorithm with elitism strategy. The

genetic operators include binary tournament selection, two-
point central operator and swap mutation operator. During
the selection stage, 10% of elites in the population are
reserved to the next generation.

� ACGA: This is our previously developed approach that alter-
nates a probabilistic model with genetic operators which
are also used in SGA. Under the hybrid framework, both glo-
bal and location information are used. The above probabilistic
model used in ACGA does not consider the dependencies
between/among variables.

� PSOSPV and PSOVNS: Particle Swarm Optimization is designed
to solve continuous problems while Tasgetiren et al. (2007)
Table 7
Average error ratio of EAs and hybrid algorithms tested on Taillard instances for makesp
tai500 � 20 instances, we employe notation ‘‘–’’ to present empty data.

n �m EAs without local search

PSOSPV SGA ACGA DDE

20 � 5 1.75 1.05 1.08 0.46
20 � 10 3.25 1.58 1.72 0.93
20 � 20 2.82 1.31 1.46 0.79
50 � 5 1.14 0.52 0.43 0.17
50 � 10 5.29 2.62 2.55 2.26
50 � 20 7.21 3.60 3.67 3.11
100 � 5 0.63 0.44 0.35 0.08
100 � 10 3.27 1.68 1.47 0.94
100 � 20 8.25 3.39 3.25 3.24
200 � 10 2.47 0.90 0.73 0.55
200 � 20 8.05 2.44 2.25 2.61
500 � 20 – 2.87 2.69 1.43

Mean1 – 1.87 1.80 1.38
Mean2 4.01 1.77 1.72 1.38
proposed the Smallest Position Value rule which enables the
PSO to solve the PFSPs. In the same research, they combine
particle swarm optimization and a very efficient local search
called Variable Neighborhood Search to increase the solution
quality. VNS indeed improved the performance of PSOSPV.
They used C programming language to code these two algo-
rithms on an Intel Pentium IV 2.6 GHZ computer.

� H � CPSO: It combines particle swarm optimization and sim-
ulated annealing approach as the local search operator. They
coded this algorithm in C++ and H � CPSO was ran on a PC
with Intel Pentium IV 3.2 GHZ.

� DDE: DDE utilizes a Discrete Differential Evolution, and a
problem-specific NEH heuristic. This algorithm was coded in
Visual C++ and tested on a computer with Intel Pentium IV
3.0 GHZ. We used the data from Pan et al. (2008) for
comparison.

In order to evaluate the performance, a stopping criterion set by
Tasgetiren et al. (2007) was to examine 500 � 2 � n solutions
where n is the number of jobs. It ensures we made the fair-compar-
ison among these algorithms. The parameter settings of SGA,
ACGA, eACGA and eACGAHybrid were given in Table 6.

When we calculated the average error ratio, the best known
used in Eq. (7) for Taillard instances in April 2004. Table 7
showed the statistics of the average ER values of all the algo-
rithms on all the 120 test instances. When eACGA was compared
with other EAs without using local search, the results showed
that eACGA yielded much lower average error ratio than those
of the other four EAs. It indicated that the bivariate probability
model in eACGA improves the performance greatly while ACGA
only takes the univariate probabilistic model. The average error
ratio of eACGA is also better than SGA, PSOSPV and DDE which
were recently proposed EAs in literature. In the group of using
the local search, we found the average error ratio of eACGAHybrid

was 5.3 times lower than that of eACGA when VNS were applied
across the 120 instances. The performance of the eACGAHybrid

algorithm was promising since it was very competitive against
PSOVNS and H � CPSO.

We further investigated the CPU time of these algorithms (See
Table 8). The SGA used less CPU time than eACGA and ACGA
because it requires a linear time to create new solution, whereas
artificial chromosome requires O(n2) time. ACGA is faster than eAC-
GA because the interval of artificial chromosome embedding in
SGA is greater and eACGA needs a bi-variate probabilistic model.
Additionally, the average CPU time of eACGAHybrid was 4.45 times
higher than eACGA in 120 instances. However, it is still worthwhile
an criterion. Since the experiments of PSOSPV, PSOVNS and H � CPSO did not run the

EAs with local search

eACGA PSOVNS H-CPSO eACGAHybrid

0.93 0.03 0.00 0.01
1.36 0.02 0.01 0.13
1.12 0.05 0.02 0.0
0.22 0.00 0.00 0.03
2.00 0.57 0.49 0.08
3.11 1.36 0.96 0.81
0.22 0.00 0.02 0.02
0.93 0.18 0.26 0.31
2.32 1.45 1.28 0.56
0.38 0.18 0.40 0.06
0.91 1.35 1.55 0.20
1.18 – – 0.60

1.22 – – 0.23
1.23 0.47 0.45 0.20



Table 8
Average CPU time of the compared algorithms. Because the experiments of PSOSPV, PSOVNS and H � CPSO did not run the tai500 � 20 instances, we employe notation ‘‘–’’ to present
empty data.

n �m EAs without local search EAs with local search

PSOSPV SGA ACGA DDE eACGA PSOVNS H-CPSO eACGAHybrid

20 � 5 0.2 0.4 0.4 0.0 0.4 13.5 0.9 4.8
20 � 10 0.2 0.4 0.4 0.1 0.4 26.3 7.7 10.5
20 � 20 0.3 0.4 0.5 0.1 0.4 69.3 18.8 20.1
50 � 5 1.4 1.9 2.1 0.1 2.3 2.8 31.9 12.2
50 � 10 1.6 2.1 2.3 0.4 2.5 79.8 78.0 30.2
50 � 20 2.1 2.3 2.5 1.0 2.7 168.1 145.6 70.5
100 � 5 10.4 6.8 7.0 0.3 8.8 52.6 22.5 27.7
100 � 10 10.9 7.3 7.4 0.8 9.3 211.0 229.7 55.6
100 � 20 12.8 8.1 8.2 3.6 10.2 310.8 372.0 141.6
200 � 10 81.8 26.6 27.9 3.0 41.8 191.3 315.1 101.2
200 � 20 89.8 29.4 30.8 14.6 45.6 438.7 480.3 187.3
500 � 20 – 222.3 243.4 69.8 595.7 – – 2545.6

Mean1 – 25.7 27.7 7.8 60.0 – – 267.3
Mean2 19.2 7.8 8.1 2.2 11.3 142.2 154.8 60.2
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to incorporate VNS with eACGA because the average error ration of
eACGAHybrid to the eACGA was 5.3 times lower. Due to PSOSPV has to
sort the sequence of the real values which take O(nlogn) time, this
algorithm took more CPU time in the group of EAs without local
search. In comparison of eACGAHybrid, PSOVNS and H � CPSO which
are integrated VNS into EAs, eACGAHybrid with less computational
time than PSOVNS and H � CPSO. Even their CPUs were slower than
ours, eACGAHybrid was more efficient than PSOVNS and H � CPSO
after we converted these CPUs into the same computing capability.
Finally, DDE used the less time even the largest instance was used.
It showed this algorithms was competitive in the flowshop sched-
uling problems.

To conclude the experiments results in this Section, eACGA is
satisfactory when it is compared with existing EDAs and other
EAs according to these computational results. eACGA could be fur-
ther improved when domain specific heuristic and local search
operator were applied. Thus the proposed algorithms could be
the state-of-art algorithms when it comes to the PFSPs for make-
span criterion.
5. Conclusions and future researches

In this paper, an extended artificial chromosome genetic algo-
rithm is proposed to deal with the NP-complete permutation flow-
shop scheduling problems in minimizing the makespan. Instead of
using one statistic model in the most EDAs, we propose the prob-
abilistic models applied in eACGA that extract the parental distri-
bution of univariate and bi-variate information from the
chromosomes generated in previous generations. eACGA then
samples from the models to produce offsprings. The experimental
results showed that eACGA performs better than numerous exist-
ing permutation-oriented EDAs and eACGA outperformed ACGA
significantly. In addition, when eACGA combines with NEH heuris-
tic and VNS, named eACGAhybrid, it could further improve the solu-
tion quality near to optimality. eACGA performs the best when
compared with other algorithms published in the literature. As a
result, this algorithm is very promising and provides a new area
for the researchers to explore.

In the future, since there are only a few permutation-oriented
EDAs according to the latest review paper (Ceberio et al., in
press), it remain needs more efforts in studying the EDAs to
solve the permutation problems. eACGA or eACGAhybrid could be
applied to deal with the scheduling problems, particularly in
the setup consideration since the problem has strong variable
interactions in nature. Furthermore, some efforts could be done
in studying the probabilistic models which consider both univar-
iate and bi-variate model. Finally, when research propose a new
permutation-oriented EDAs, it is suggested to compare the new
proposed algorithm with eACGA and that of Pan and Ruiz
(2012). It could be very useful to identify the performance of
their proposed algorithms.
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