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Abstract

This paper use the flexible skewed generalized t distribution (SGT) to provide an accurate
characterization of the non-normal of the commodity return distributions, and analyze the
time-varying scaling parameters, including those in the crude oil and gold markets. We also
estimate the VaR on the basis of the GARCH-SGT model, the out-of-sample forecasting periods
covers a long period, including the most unsteady period of the global financial crisis. The
empirical results show that the forecasted VaR with the SGT distribution provides the most
accurate out-of-sample forecasts either in the crude oil or gold markets. In the crude oil market,
though all the distributions provide the correct coverage rate, the forecasted oil spot VaR with the
normal distribution is appropriate only for the low confidence level, and the accuracy and
performance deteriorate and lose accuracy for the higher confidence levels. In comparison, the
SGT distribution provides the most accurate out-of-sample forecasts within the strict VaR
confidence levels. With regard to the gold markets, the most appropriate distribution for the
forecasted VaR is the SGT distribution, and the failure rates in the normal distribution and GED
for the VaR are statistically higher than the specific probability of the model. Comparatively, the
scaling parameters in the SGT distribution can capture the volatilities of oil and gold effectively
and they show that the unexpected losses are smaller in the SGT distribution. Finally, the
estimated VaR within the SGT model is significantly superior to the other distributions in the
crude oil and gold markets.

Keywords: Skewed generalized t distribution; Commodity volatility; Value-at-Risk
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INTRODUCTION

Most time series are characterized by leptokurtosis and skewness, not only in
financial assets (Bollerslev, 1987; Engle and Gonzales-Rivera, 1991; Ait-Sahalia and
Lo, 1998; Theodossiou and Trigeorgis, 2003; Bali and Theodossiou, 2007) but also in
energy assets (Solt and Swanson, 1981; Taylor, 1998; Giot and Laurent, 2003; Chan et
al., 2007; Fan, 2008). Moreover, empirical evidence has shown that the conditional
normal time series models are inadequate for estimating the conditional return
distribution. However, relatively little work has been carried out on modeling and
estimating volatilities in oil and gold assets by using non-normal distributions, for
example, in oil markets. Giot and Laurent (2003), Chan et al. (2007), Fan et al. (2008),
and Hung et al. (2008) comprise the limited body of work that calculate the
Value-at-Risk (VaR) of commodity assets using non-normal distributions; a majority of
the studies that measure the volatility of oil returns do so with normal distributions
(Cabedo and Moya, 2003; Busch, 2005; Sadorsky, 2006; Sadeghu and Shavvalpour,
2006). Fan et al. (2008) pointed out that it is important to be acquainted with the
characteristics of oil market risks. However, the available quantitative literatures, for
example, in the gold market, are very limited. Casassus and Collin-Dufresne (2005)
recently evaluated the VaR for gold, using a three factor model. This is unfortunate
given the importance of oil and gold to the global economy. For participating in oil and
gold markets, it is also crucial to describe the asset prices; however, no appropriate
method is available for this purpose. Volatility is the principal factor for developing the
economic and financial models of pricing and hedging, and estimations made under the
correct specifications of the conditional distribution are more efficient. Therefore, this
paper utilizes the most flexible distribution to describe the oil and gold volatilities that
are characterized by leptokurtosis and skewness.

To measure market risk, the application of the VaR methodology offers
comprehensive and recapitulative advantages. In practice, a key risk measure based on
the VaR concept is the conditional VaR, which is the worst possible loss at a given
confidence level due to adverse market movements over the next reporting period,
conditional on the current portfolio volatility and market information. Mathematically,
VaR is defined as a quantile of a probability distribution, used to model an underlying
portfolio value or its return. It is commonly used in symmetric and normal distributions
for asset returns. Portfolio VaR 1is often calculated on the basis of the
variance-covariance approach, and returns follow the normal distribution. The most
used models are the classical autoregressive conditional heteroscedasticity
(ARCH)/generalized ARCH (GARCH) models, with attributes such as volatility
clustering and the long-range dependence structure that exist in financial assets;
moreover, these models are based on conditional Gaussian innovations (see Engle,
1982; Bollerslev, 1986). However, empirical evidence has demonstrated that the
conditional normal time series models are inadequate for estimating the tail quantiles
of the conditional return distributions. Substantial empirical evidence shows that the
distribution of financial returns is typically skewed, peaked around the mean
(leptokurtic) and characterized by fat tails. Bollerslev, Engle, and Nelson (1994)
proposed that the leptokurtosis is reduced, but not eliminated, when returns are
standardized using time-varying estimates for the means and variances. This prompts
the gradual adoption of models with heavy-tailed innovations in risk modeling. Many
extensions of the classical GARCH models with heavy-tailed innovations have been
proposed.

Student’s t, generalized error distribution (GED), and a mixture of two normal
distributions are frequently used for describing the non-normal characteristics in the
VaR literature. With regard to the commodity markets, Giot and Laurent (2003)



compared the performance of the RiskMetrics, skewed Student asymmetric power
GARCH (APGARCH), and skewed Student ARCH models for several commodities.
They found that the skewed Student ARCH model delivered excellent results and was
relatively easy to use. Chan et al. (2007) considered a GARCH model with
heavy-tailed innovations and characterized the limiting distribution of an estimator of
the conditional VaR, which corresponds to the external quantile of the conditional
distribution of the GARCH process. Fan et al. (2008) estimated the VaR of the returns
in West Texas Intermediate (WTI) and Brent crude oil spot markets using a
GED-GARCH model. They found this approach to be more realistic and
comprehensive than the commonly used standard normal distribution-based VaR model,
and also more effective than the well-recognized historical simulation with
autoregressive moving average (ARMA) forecasts. Hung et al. (2008) investigated the
fat-tailed innovation process on the VaR estimates, and the empirical results showed
that the GARCH-HT model is quite accurate and efficient in estimating the VaR for
energy commodities.

However, because such distributions partially deal with the issues of
leptokurtosis and skewness, they cannot fully correct the measurement bias in risk
problems (Bali and Theodossiou, 2007). The skew generalized t (SGT) distribution,
introduced by Theodossiou (1998), is a skewed extension of the generalized-t
distribution, originally proposed by McDonald and Newey (1988). The SGT is a
distribution that allows for a very diverse level of skewness and kurtosis, and it has
been used to model the unconditional distribution of daily returns for a variety of
financial assets (Theodossiou, 1998; Harris and Kucukozmen, 2001). Furthermore, the
SGT nests several well-known distributions such as the generalized t (GT) of
MacDonald and Newey (1988); the skewed t (ST) of Hansen (1994); the skewed
generalized error distribution (SGED) of Theodossiou (2001); and the normal, Laplace,
uniform, GED, and student t distributions. Harris et al. (2004) further found that a
conditional SGT distribution offers a substantial improvement in the fit of the GARCH
model for stock index assets. Bali and Theodossiou (2007) proposed a conditional
technique for estimating the VaR and expected shortfall measures on the basis of the
SGT distribution in the S&P 500 index returns. They found that GARCH-type models
with the SGT distribution are much superior to the conditional normal distribution for
all GARCH specifications and all probability levels. Bali et al. (2008) also used the
SGT distribution with time-varying parameters to provide an accurate characterization
of the tail of the standardized equity return distributions. To fill in the gap in the
inadequate research in which the SGT distribution in non-normal commodity returns
has been employed, we use the GARCH-SGT model to model the commodity
volatilities. The analytical and empirical results in this paper could provide better
approximations of reality.

The remainder of this paper is organized as follows. Section 2 describes the
motivation behind focusing on the crude oil and gold markets. Section 3 presents the
methodologies of the GARCH-SGT models and the measurement of the VaR. Section
4 compares the out-of-sample empirical results of the SGT, and the normal distribution
and GED. Section 5 concludes the paper.

IMPORTANCE OF CRUDE OIL AND GOLD

Oil is one of the most important commodities, and almost everything tangible
that we physically move burns oil in the process. One of the characteristics of the oil
market prices is volatility, which is both high and variable over time. In general, oil
prices have become more volatile since 1986 (Plourde and Watkins, 1998; Lynch, 2002;
Regnier, 2007), and this volatility has a significant impact on the global economy (Lee



et al., 1995; Ferderer, 1996; Sadorsky, 1999, 2006). US oil prices have been heavily
regulated through production or price control measures throughout much of the
twentieth century. With the exception of the occasional jump in late 1990, crude oil
prices have risen progressively since the later part of 2001. In January 2008, oil prices
unprecedentedly surpassed $100 a barrel, the first of many price milestones to be
passed in the course of the year. In July 2008, oil prices peaked at $147.30 a barrel. In
the second half of 2008, the prices of most commodities fell dramatically in
anticipation of diminished demand owing to the recent global recession. In fact, these
high prices resulted in a dramatic drop in demand and prices fell below $35 a barrel at
the end of 2008. It is believed that high prices will cause genuine economic damage,
resulting in the threat of stagflation and a reversal of globalization. In July 2009, the
president of the Organization of Petroleum Exporting Countries (OPEC), Jose Maria
Botelho de Vasconcelos, remarked that a crude oil price of $68-$71 a barrel was
optimal for a stable industry. The oil market was very fragile, and crude prices were
susceptible to huge fluctuations caused by minor events. Factors such as high demand,
low supply, strategies adopted by OPEC, environmental regulations, hedge fund
actions, and violence in the Middle East have all stimulated prices. A traditional
demand-based framework was unable to explain the marked deterioration in the
commodity and oil prices (Chaudhuri, 2001). Jalali-Naini and Manesh (2006) also
pointed out that high volatility is a very promising characteristic for testing volatility
models.

Of all the precious metals, gold is the most popular as an investment. Investors
generally buy gold as a hedge or safeguard against any economic, political, social, or
currency-based crises. History has shown that in adverse periods, investors tried to
preserve their assets by investing in precious metals, most notably gold and silver.
Since April 2001, the gold price has more than tripled in value against the US dollar,
prompting speculation that this long secular bear market (or the Great Commodities
Depression) has ended and a bull market has reemerged. In March 2008, the gold price
increased above $1,000. A number of studies have reported on the relationship between
gold and macroeconomic variables (Sherman, 1983; Baker and Van-Tassel, 1985;
Kaufmann and Winters, 1989; Sjaastad and Scacciavillani, 1996; Taylor, 1998;
Christie-David et al., 2000; Cai et al., 2001; Tully and Lucey, 2006). These studies
confirmed that macroeconomic variables such as the exchange rate of dollar, stock
index, interest rate, consumer price index (CPI), and unemployment rate influence gold
returns. In contrast, Lawrence (2003) argued that no significant correlations exist
between gold returns and changes in certain macroeconomic variables.

To address the ambiguous empirical results in measuring the VaR within oil and
gold markets, this paper provides a comprehensive analysis using the flexible SGT
distribution for modeling the volatilities. This paper extends the existing research in oil
and gold markets in four important ways. First, we calculate the VaR on the basis of
the SGT—a distribution that allows for a very diverse level of skewness and
kurtosis—for modeling the distribution of commodity returns. The normal distribution
and GED are the comparable models used to assess the robustness of the SGT
distribution. Second, considering the behavior of highly volatile oil and gold assets, we
employ the GARCH models for estimating the time-varying conditional variance of
returns. Third, we analyze the time-varying scaling parameters of crude oil and gold
assets. It will be easy to observe why traditional distributions are not appropriate for
estimating volatilities and forecasting the VaR. Fourth, this paper investigates the
volatility in the prices—both spot and futures—of oil and gold assets. This paper also
analyzes the performance of out-of-sample forecasting for a long period, covering both
stable and high-fluctuation periods, including the period of the current global financial



crisis. The VaR in the SGT distribution is significantly superior to other distributions.

METHODOLOGY
GARCH(1,1) Model with Skewed Generalized T Distribution (GARCH-SGT)

This paper investigates GARCH(1,1) model in computing the conditional means
and conditional variances for conditional VaR analysis. The GARCH(1,1) model
proposed by Bollerslev (1986) is as follows:

r=p, +¢, & ~(0,h,) (1)

h =B, +B1ht—lzt2—l +PB,h, (2)
where 3, >0, B, >0, B, >0and B, +B, <1. In the equations, p,and h, are the

conditional mean and conditional standard variance of returns r, based on the

information set Q _, up to time t-1. The standardized error term is z, =g, / Jh, .

Considering the non-normal characteristics of energy assets, the conventional
GARCH model with normal distribution is fail to capture the behavior of
high-volatility of oil and golf assets. SGT distribution, advanced by Theodossiou
(1998), is displaced for well-describing the distribution of assets returns exhibiting
skewness and leptokurtosis. The probability density function for the SGT distribution

can be represented as follows:
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where A is a skewness parameter, “sign” is the sign function, B(*) is the beta function,
and o is the Pearson’s skewness and mode of f(z,). The scaling parameters n, k and A

obey the following constraints: n>2, k>0 and —1<A <1. The skew parameter A
controls the rate of descent of the density around the mode of z. In the case of positive
skewness (A > 0), the density function is skewed to the right. In contrary, the density
function is skew to the left with the negative skewness (A < 0). The parameter n and k
control the tail and height of the density. Smaller values of x and n result in larger
values for the kurtosis (i.e. more leptokurtosis p.d.f.s) and vice versa. The parameter
K (>0) determines the (fat) tail and height or shape (degree of leptokurtosis) of the
distributions (eq., normal for k=2 and Laplace for x =1; thinner tail than normal
for k> 2 wvs. thicker tail than normal for k <2). The parameter n has the degree of
freedom interpretation in the case A =0 and « =2. Moreover, larger positive values
of A result in larger positive values for both skewness and kurtosis (Theodossiou,
1998).

The SGT distribution nests several well-known distributions (see Table 1).
Specifically, it gives for A =0, McDonald's and Newey's(1988) GT distribution; for
k =2, Hansen(1994)'s skewed student's t distribution; for A=0 and k=2, the
student's t distribution; for A =0 and n =0, the Subbotin(1923)'s power exponential



distribution; for A=0, k=1 and n =0, the Laplace distribution; for A =0, k=2
and n=1, the Cauchy distribution; for A=0, k=2, and n=o, the normal
distribution; and for A =0, kK=o, and n =, the uniform distribution. Furthermore,
the conditional version of SGT for k=2 nests the conditional skewed t distribution
of Jondeau and Rockkinger (2003).

The log-likelihood function of the GARCH-SGT model can be written as:

T
LogL = ZIn f(z,|n,x, ) 4)
=1

SGT -

Measurement and Performance in VaR
Definition and estimation

A VaR model measures market risk for a portfolio of financial assets and
measures the potential loss that a portfolio could lose over a given period of time. The
manager may be interested in making a statement of the following form: “We are p
percent certain that we will lose more than v dollars in the next N days.” The variable
v is the VaR of the portfolio. Mathematically, the function can be expressed as:

p= [fmdr. )

where f (r) represents the probability density function of return r, the change in the

value of a portfolio over a certain horizon N days. The one-day-ahead VaR based on

the GARCH-SGT can be calculated as:
VaR} =1, (z,;n,6,4)-/h, —E() (6)

where f_(z,;n,x,A) denotes the left quantile at o for SGT distribution' with scaling
parameters n, k and A. The h;is the conditional variance of the GARCH model.

Test of correct conditional coverage

A “failure” 1s defined as an outcome r, <v, . Intuitively, a “good” VaR
estimators v would be such that Pr(r, <0,) is close to p. The indicator variable is set
as followed,

I, if r<vy,
I = : (7)

{0, otherwise

The stochastic process {I,} is called the failure process. The VaR forecasts are said to
be efficient of they display correct conditional coverage, that is, E(It‘H):th.

Kupeic (1995) develops a test for correct unconditional coverage in the likelihood ratio
(LR) framework. The likelihood ratio statistics is as follows:

LRuc = _210g|:1?\n(1—-?\)nj| ~ X(Zl) (8)
n(l-m"

where p is the tolerance level where VaR measures are estimated, n; (ng) is the number

of 1 (0) in the indicator series, and n=n,/(n, +n,), the MLE of p. The null

hypothesis of the failure probability p is tested against the alternative hypothesis that
the failure probability is different from p.

Evaluation using regulatory loss function

! The quantiles of the SGT distribution with various combinations of shape parameters are calculated
with numerical integration or bootstrapping technique.



The loss function evaluation method proposed based on assigning to VaR
estimates a numerical score that reflects specific regulatory concerns. It provides a
measure of relative performance that can be used to monitor the performance of VaR
estimates. Two regulatory loss functions proposed by Lopez (1998) are described
below.

(1) Binary loss function

If the predicted VaR is not able to cover the realized loss, this is termed a
‘violation’. A binary loss function is merely the reflection of the LR test of
unconditional coverage test and gives a penalty of one to each exception of the VaR.
Namely,

L if 1, <v,
t+1 T .
i 0, otherwise

€
If a VaR model truly provides the level of coverage defined by its confidence level,
then the average binary loss function over the full sample will equal p for the (1-p) th

percentile VaR

(2) Quadratic loss function
The quadratic loss function of Lopez (1998) penalizes violations differently from
the binary loss function, and pays attention to the magnitude of the violation. That is,

L, =] " o)’ T <O (10)
0 ,ifr., >v

t+1 t+1
The quadratic term ensures that large violations are penalized more than the small
violations which provide a more powerful measure of model accuracy than the binary
loss function.

EMPIRICAL RESULTS
Out-of-sample forecasting performance: Crude oil markets

To assess the forecasting performance with alternative distributions, we first
make estimates on the basis of daily returns for two years, after which the estimation
period is continuously rolled forward by adding the most recent day and excluding the
oldest. Following this process, the out-of-sample VaRs are calculated for the next 1,800
days (from January 2002 to March 2009); the results are illustrated in Figure 2. The
forecasting performance can be analyzed in terms of the integrity of the results for the
long forecasting period, which includes both stable and high volatility periods,
especially through the global financial crisis period from 2007. Tables 3 and 4 list the
out-of-sample forecasting results for crude oil and gold in this paper; Panels A and B
show the spot and futures prices, respectively.

We first discuss the results of the crude oil spot market. All the statistics are not
significant in the correct unconditional coverage test (LRuc), thus indicating that the
estimated failure probability is statistically consistent with the specified probability of
the model. We then compare the unexpected loss (UL) and the average quadratic loss
function (AQLF?). For the low confidence level (95% VaR), the normal distribution
yields the highest VaR estimates and the lowest failure rates in the AQLF and UL. In
comparison, the failure rates in the GED and SGT distribution are higher for the low
confidence level of 95% VaR. Although these distributions provide a correct coverage
rate, the SGT distribution and GED have lower accuracy than normal distribution.

2 AQLF is the final standard when we select the best model, because large violations are penalized more
than the small violations, and it provides a more powerful measure of model accuracy than other
standards.



However, the results are completely different for the high confidence levels (99% and
99.5%). The most correct VaR estimates are with the SGT distribution, whereas the
accuracy and performance with the GED and normal distribution deteriorate and lose
accuracy. A comparison of the AQLF values reveals that the lowest value is 0.0597 and
0.0362 for 99% and 99.5%, respectively, with the SGT distribution; 0.0699 and 0.0445,
respectively, with the GED; and 0.0785 and 0.0542, respectively, with the normal
distribution. It is obvious that the SGT distribution provides the most accurate
out-of-sample forecasts within the strict VaR confidence levels. With regard to the
crude oil futures prices, the SGT distribution shows the best performance in any
confidence level. Part B in Table 3 shows that although all the estimated failure rates
are statistically consistent with the specified probability of the model, the AQLF and
UL are the lowest with the SGT distribution. The best (or lowest) AQLF for 95%, 99%.,
and 99.5% VaR is 0.0185, 0.0283, and 0.0119, respectively, with the SGT distribution,
and the inferior AQLF is with the GED; further, the worst (or highest) AQLF is 0.1878,
0.0482, and 0.0293, respectively, with the normal distribution. In sum, the skewness
and leptokurtosis result in the improper VaR estimates with the normal distribution.

Next, we illustrate the time-varying scaling parameters in Figure 3 for analyzing
the superiority of the SGT distribution in the crude oil spot prices’. Two lines are
drawn: the solid line indicates the values as on August 9, 2007, and the dotted line
indicates the values as in September 2008. The former date indicates the beginning of
the global financial crisis, which resulted in a liquidity crisis that prompted a
substantial injection of capital into the financial markets by the United States Federal
Reserve, Bank of England, and the European Central Bank. In the latter date,
September 2008, the crisis deepened, as stock markets worldwide crashed and entered
a period of high volatility, and a large number of banks, mortgage lenders, and
insurance companies failed in the subsequent weeks. In the part in the figure indicating
the GED, we can see that the fat-tail parameter (k) is below 2 in the forecasting period,
indicating that the fat-tail exists in the crude oil spot prices. However, the fluctuation of
the parameter k is not large, except in the global financial crisis period when it is
comparatively low. In comparison, an observation of the scaling parameters of the SGT
distribution in Part B of Figure 3 shows that the skewness parameter A is smooth
around 0, thus indicating that the skewness is not very important. However, two
kurtosis parameters (k and n) perform differently in the forecasting period. The first
parameter, k, is very smooth and the average value is close to that of the normal
distribution (i.e., 2), indicating no peakness for the empirical distribution. The second
parameter, n, on the other hand, is very volatile, especially in the beginning of the
global financial crisis. By definition, the smaller values of k and n result in larger
values for the kurtosis, and vice versa, and the SGT distribution is close to the normal
distribution while A =0, k=2, and n=o. We can therefore say that the normal
distribution is appropriate only for the starting year of the global financial crisis and the
fat-tail distribution is more appropriate for other periods. To eliminate the extremely
high value for parameter n, we redraw the scaling parameters in Part C in Figure 3. It
can be clearly seen that the fluctuation in parameter n and the estimated values of the
parameter were not very large except in mid-2003 and early 2004, indicating
significant fat tails for the empirical distribution of standardized returns. This is why
the forecasting performance with the normal distribution was not better than that with
the alternative distributions.

Out-of-sample forecasting performance: Gold markets

? The results are shown in terms of crude oil futures prices.



Next, we analyze the gold spot market, for all the confidence levels. The
estimated failure rates with the SGT distribution are the only ones that pass the
coverage rate test, LRuc. However, the estimated failure rates with either the normal
distribution or GED are rejected in the LRuc tests. The phenomenon represents the
failure rates in the normal distribution and GED, because the VaRs are statistically
higher than the specific probability of the model. For example, in the normal
distribution, the estimated failure rates are 0.0605, 0.0250, and 0.0183, which are
statistically much higher than the specific probabilities of 0.05, 0.01, and 0.005. The
same results appear in the GED, where the estimated failure rates are 0.0622, 0.0177,
and 0.0083, which significantly exceed the specific probabilities of 0.05, 0.01, and
0.005. Identical results are shown in the AQLF and UL: the values are the lowest with
the SGT distribution irrespective of the confidence level (95%, 99%, and 99.5%). With
regard to the futures market, though the estimated failure rates either with the normal
distribution or GED are fine in 95% VaR, the failure rates are significantly biased in
higher confidence levels (99% and 99.5% VaR). Let us take the normal distribution, for
example. The estimated failure rates are 0.0216 and 0.0161 for 99% and 99.5%
confidence levels, respectively; these values significantly exceed the specific
probabilities of 0.01 and 0.005, respectively. In comparison, the estimated failure rates
with the SGT distribution pass the coverage rate test in all the confidence levels.
Similar results can be found in the AQLF and UL, and the values with both the normal
distribution and GED are relatively higher than those with the SGT distribution.

We illustrate the time-varying scaling parameters in Figure 4. In the part
indicating the GED in the figure, we see that the fat-tail parameter (k) fluctuates around
2 prior to August 2007; moreover, there is a clear decline in the parameter in the global
financial crisis period. Specifically, in the GED, the fat-tail is more apparent in the
financial crisis period, but not so much in the other periods. In comparison, the scaling
parameters of the SGT distribution in Part B of Figure 4 show that the skewness
parameter A is smooth around 0, indicating that the skewness is not very significant.
However, two kurtosis parameters (k and n) perform differently in the forecasting
period. The first parameter, k, is quite stable in the whole period and the average value
is around 2, whereas the second parameter, n, is relatively volatile as compared to
parameter K. Except for the beginning of 2003 and mid-2007, the value of parameter n
is low, indicating that the kurtosis exists significantly. In comparison, the scaling
parameters in the SGT distribution can appropriately capture the volatility of gold and
they show that the unexpected losses are smaller in the SGT distribution. Figure 5
shows the results of the forecasted VaR. Focusing on the latest period of the global
financial crisis, we can easily observe that the forecasted VaR with the normal
distribution and GED cannot capture the situation of high volatility, and the forecasted
loss increases. However, the forecasted VaR with the SGT distribution is apparently
different: the forecasted errors are relatively much smaller than the alternative
distributions.

In sum, the forecasted VaR with the SGT distribution provides the most accurate
out-of-sample forecasts either in the crude oil or gold markets. In the crude oil market,
though all the distributions provide the correct coverage rate, the forecasted oil spot
VaR with the normal distribution is only appropriate for the low confidence level, and
the accuracy and performance distributions deteriorate and lose accuracy for the higher
confidence levels. In comparison, the SGT distribution provides the most accurate
out-of-sample forecasts within the strict VaR confidence levels. With regard to the gold
market, the most appropriate distribution for the forecasted VaR is with the SGT
distribution, and the failure rates in the normal distribution and GED for the VaR are



statistically higher than the specific probability of the model. Therefore, the precise
forecasting is the most important reason for adopting the SGT distribution.

CONCLUSION

This paper provides a comprehensive analysis using the flexible SGT
distribution for modeling commodity volatilities and analyzing the time-varying
scaling parameters, including those in the crude oil and gold markets. It also estimates
the VaR within the framework of the GARCH-SGT model. The out-of-sample
forecasting period covers a long period, including the most unsteady period of the
global financial crisis. The empirical results show that the forecasted VaR with the SGT
distribution provides the most accurate out-of-sample forecasts either in the crude oil
or gold markets. In the crude oil market, though all the distributions provide the correct
coverage rate, the forecasted oil spot VaR with the normal distribution is appropriate
only for the low confidence level, and the accuracy and performance distributions
deteriorate and lose accuracy for the higher confidence levels. In comparison, the SGT
distribution provides the most accurate out-of-sample forecasts within the strict VaR
confidence levels. Further, the time-varying parameters in the SGT distribution show
that two kurtosis parameters (k and n) perform differently in the forecasting period.
The peakness parameter is close to that of the normal distribution (i.e., 2), indicating no
peakness for the empirical distribution. However, the fat-tail characteristic significantly
exists for the empirical distribution of returns. Focusing on the period of the current
global financial crisis, we see that the estimation results of the scaling parameters in the
GED and SGT distribution are totally different: the SGT distribution allows a very
diverse level of skewness and kurtosis, and can capture the volatility more effectively.
This is why the forecasting performance with the normal distribution and GED is not
better than with the SGT distribution.

With regard to the gold markets, the most appropriate distribution for the
forecasted VaR is the SGT distribution, and the failure rates in the normal distribution
and GED for the VaR are statistically higher than the specific probability of the model.
Moreover, the time-varying scaling parameters are similar to crude oil returns. The
skewness parameter is close to 0, indicating that the skewness is not very significant;
the peakness parameter is close to that of the normal distribution, indicating no
peakness for the empirical distribution; and finally, the fat-tail parameter is small,
indicating that the kurtosis significantly exists. Comparatively, the scaling parameters
in the SGT distribution can capture the volatilities of gold effectively and they show
that the unexpected losses are smaller in the SGT distribution. We focused on the latest
period of the global financial crisis and found that the forecasted VaR with the normal
distribution and GED are biased, whereas the SGT distribution can model the high
volatility well. Finally, the estimated VaR within the SGT model is significantly
superior to the other distributions in the crude oil and gold markets.
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Table 1. The Special Cases of SGT distributions

A K n Notes:
Skew generalized t (SGT) Free Free Free A>0 skew to the right
Skew t (ST) Free 2 Free A<0 skew to the left
Skew GED (SGED) Free Free )
Skew Normal Free 2 ) k>2 thinner tail than normal
Skew Laplace Free 1 ) k<2 thicker tail than normal
General t (GT) 0 Free Free
Student t 0 2 Free
GED 0 Free o0
Normal 0 2 o0
Laplace 0 1 o'l
Uniform 0 0 0
Table 2. Descriptive Statistics
Mean S.D. Skewness Excess Kurtosis J-B test
Part A. Crude oil
Spot price 49.9529 26.3458 1.2846%* 1.2981%* 795.8244%*
return 0.011 2.661 -0.2766** 4.2950%* 1801.1006**
Futures price 49.9703 26.3638 1.2793%*%* 1.2867** 787.7146**
return 0.0276 2.6552 -0.2082%** 4.0639%* 1602.8249**
Part B. Gold
Spot price 484.8145 208.9687 0.8346** -0.5371** 295.0343%**
return 0.0518 1.8027 -0.2259** 23.0336** 50930.0510**
Futures price 486.2587 209.9169 0.8247** -0.5695** 292.1880**
return 0.0511 1.2118 0.0956* 5.0259%** 2427.3922%%*

Notes: J-B test is Jarque-Bera normality test. **and * represent significance under 1% and 10% level.

Table 3. Out-of-sample performance of alternative distributions for crude oil

Part A. Spot
Mean S.D. LRuc ABLF AQLF UL
Normal 95% VaR -3.9992 1.7264 0.0464 0.0511 0.2385 -0.0633
99% VaR -5.7055 2.4509 2.4527 0.0138 0.0785 -0.0185
99.5% VaR  -6.3302 2.7162 1.5697 0.0072 0.0542 -0.0126
GED 95% VaR -3.9632 1.6979 0.0000 0.0500 0.2626 -0.0667
99% VaR -6.0390 2.5028 0.2166 0.0111 0.0699 -0.0172
99.5% VaR  -6.8477 2.8146 1.5697 0.0072 0.0445 -0.0110
SGT 95% VaR -3.9120 1.6634 0.8054 0.0546 0.2616 -0.0681
99% VaR -6.1914 2.4670 0.0485 0.0094 0.0597 -0.0139
99.5% VaR  -7.2397 2.8140 0.1169 0.0055 0.0362 -0.0077
Part B. Futures
Mean S.D. LRuc ABLF AQLF UL
Normal 95% VaR -3.9342 1.6231 0.1041 0.0516 0.1878 -0.0572
99% VaR -5.6043 2.3048 0.8384 0.0122 0.0482 -0.0130
99.5% VaR  -6.2157 2.5544 0.4169 0.0061 0.0293 -0.0082
GED 95% VaR -3.9322 1.6056 0.4124 0.0533 0.1885 -0.0567
99% VaR -5.8702 2.3483 0.5354 0.0083 0.0368 -0.0101
99.5% VaR  -6.6131 2.6327 0.4838 0.0038 0.0199 -0.0061
SGT 95% VaR -3.9221 1.5924 0.0130 0.0494 0.1855 -0.0565
99% VaR -6.0281 2.3227 2.1626 0.0067 0.0283 -0.0092
99.5% VaR  -6.9432 2.6341 0.0957 0.0044 0.0119 -0.0041

Notes: * represents significance under 1% level. LRuc is the Log-likelihood test for correct
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unconditional coverage. ABLF is the average binary loss function. AQLF is the average quadratic loss
function. UL denotes the unexpected loss, which refers to the average dollar loss caused by the failures

of VaR model.

Table 4. Out-of-sample performance of alternative distributions for gold

Part A. Spot

Normal 95% VaR
99% VaR
99.5% VaR

GED 95% VaR
99% VaR
99.5% VaR

SGT 95% VaR
99% VaR
99.5% VaR

Part B. Futures

Normal 95% VaR
99% VaR
99.5% VaR

GED 95% VaR
99% VaR
99.5% VaR

SGT 95% VaR
99% VaR
99.5% VaR

Mean S.D. LRuc ABLF AQLF UL
-2.5769 1.4962 3.9672* 0.0605 0.3658 -0.0733
-3.6759 2.1151 28.8773**  0.0250 0.1984 -0.0322
-4.0783 2.3416 38.0757**  0.0183 0.1651 -0.0244
-2.4878 1.3122 5.2706*%*  0.0622 0.3950 -0.0792
-4.2121 2.1530 8.9335%*  0.0177 0.1604 -0.0231
-4.9446  2.5072 3.3448**  0.0083 0.1187 -0.0146
-2.4837 1.1153 2.4477 0.0587 0.4427 -0.0804
-4.5451 1.9566 0.9358 0.0125 0.1669 -0.0211
-5.6366  2.4104 0.5503 0.0037 0.1078 -0.0130

Mean S.D. LRuc ABLF AQLF UL
-1.8894  0.6966 2.1878 0.0577 0.1329 -0.0459
-2.6959 0.9880 18.5572**  0.0216 0.0500 -0.0182
-2.9911 1.0947 28.0883**  0.0161 0.0355 -0.0133
-1.8807  0.7054 2.1878 0.0577 0.1333 -0.0461
-2.9817 1.1008 5.7296* 0.0161 0.0368 -0.0137
-3.4252 1.2600 8.4500**  0.0105 0.0223 -0.0085
-1.9780  0.8220 0.1156 0.0518 0.1256 -0.0438
-3.3187 1.4320 1.8863 0.0135 0.0311 -0.0115
-3.9548 1.7703 2.5151 0.0080 0.0171 -0.0061

Notes: ** and * represent significance under 1% and 5% level. LRuc is the Log-likelihood test for
correct unconditional coverage. ABLF is the average binary loss function. AQLF is the average
quadratic loss function. UL denotes the unexpected loss, which refers to the average dollar loss caused

by the failures of VaR model.

Table 5. Descriptive statistics of time-varying scaling parameters

Part A. Crude oil

Spot:  GED ~ kurtosis: «

SGT ~ kurtosis:

K

n
skew: A

Futures: GED ~ kurtosis:

SGT ~ kurtosis: «
n
skew: A

Part B. Gold

Spot:  GED ~ kurtosis:

SGT ~ kurtosis: «
n
skew: A

Futures: GED ~ kurtosis:

SGT ~ kurtosis: «
n
skew: A

Mean S.D. Min. Max.
1.315 0.198 0.916 1.779
2.347 0.335 1.566 4371
9.993 14.033 3.732 183.453
-0.049 0.044 -0.151 0.101
1.221 0.179 0913 1.585
2.204 0.388 1.444 3.742
87.476 121.474 3.770 363.980
-0.054 0.055 -0.160 0.132
1.898 0.147 1.567 2.289
1.934 0.527 1.062 5.294
4,994 3.405 2.048 70.813
-0.094 0.081 -0.285 0.080
1.531 0.239 1.168 2.244
2.001 0.574 1.065 5.479
31.372 68.244 2.001 290.703
-0.127 0.126 -2.183 0.165
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Skewness and Leptokurtosis in VaR Estimation:
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Abstract

This paper use the flexible skewed generalized t distribution (SGT) to provide an
accurate characterization of the non-normal of the commodity return distributions, and
analyze the time-varying scaling parameters, including those in the crude oil and gold
markets. We also estimate the VaR on the basis of the GARCH-SGT model, the
out-of-sample forecasting periods covers a long period, including the most unsteady
period of the global financial crisis. The empirical results show that the forecasted VaR
with the SGT distribution provides the most accurate out-of-sample forecasts either in
the crude oil or gold markets. In the crude oil market, though all the distributions
provide the correct coverage rate, the forecasted oil spot VaR with the normal
distribution is appropriate only for the low confidence level, and the accuracy and
performance deteriorate and lose accuracy for the higher confidence levels. In
comparison, the SGT distribution provides the most accurate out-of-sample forecasts
within the strict VaR confidence levels. With regard to the gold markets, the most
appropriate distribution for the forecasted VaR is the SGT distribution, and the failure
rates in the normal distribution and GED for the VaR are statistically higher than the
specific probability of the model. Comparatively, the scaling parameters in the SGT
distribution can capture the volatilities of oil and gold effectively and they show that
the unexpected losses are smaller in the SGT distribution. Finally, the estimated VaR
within the SGT model is significantly superior to the other distributions in the crude oil

and gold markets.

Keywords: Skewed generalized t distribution; Commodity volatility; Value-at-Risk



INTRODUCTION

Most time series are characterized by leptokurtosis and skewness, not only in
financial assets (Bollerslev, 1987; Engle and Gonzales-Rivera, 1991; Ait-Sahalia and
Lo, 1998; Theodossiou and Trigeorgis, 2003; Bali and Theodossiou, 2007) but also in
energy assets (Solt and Swanson, 1981; Taylor, 1998; Giot and Laurent, 2003; Chan et
al., 2007; Fan, 2008). Moreover, empirical evidence has shown that the conditional
normal time series models are inadequate for estimating the conditional return
distribution. However, relatively little work has been carried out on modeling and
estimating volatilities in oil and gold assets by using non-normal distributions, for
example, in oil markets. Giot and Laurent (2003), Chan et al. (2007), Fan et al. (2008),
and Hung et al. (2008) comprise the limited body of work that calculate the
Value-at-Risk (VaR) of commodity assets using non-normal distributions; a majority of
the studies that measure the volatility of oil returns do so with normal distributions
(Cabedo and Moya, 2003; Busch, 2005; Sadorsky, 2006; Sadeghu and Shavvalpour,
2006). Fan et al. (2008) pointed out that it is important to be acquainted with the
characteristics of oil market risks. However, the available quantitative literatures, for
example, in the gold market, are very limited. Casassus and Collin-Dufresne (2005)
recently evaluated the VaR for gold, using a three factor model. This is unfortunate
given the importance of oil and gold to the global economy. For participating in oil and
gold markets, it is also crucial to describe the asset prices; however, no appropriate
method is available for this purpose. Volatility is the principal factor for developing the
economic and financial models of pricing and hedging, and estimations made under the
correct specifications of the conditional distribution are more efficient. Therefore, this
paper utilizes the most flexible distribution to describe the oil and gold volatilities that

are characterized by leptokurtosis and skewness.



To measure market risk, the application of the VaR methodology offers
comprehensive and recapitulative advantages. In practice, a key risk measure based on
the VaR concept is the conditional VaR, which is the worst possible loss at a given
confidence level due to adverse market movements over the next reporting period,
conditional on the current portfolio volatility and market information. Mathematically,
VaR is defined as a quantile of a probability distribution, used to model an underlying
portfolio value or its return. It is commonly used in symmetric and normal distributions
for asset returns. Portfolio VaR is often calculated on the basis of the
variance-covariance approach, and returns follow the normal distribution. The most
used models are the classical autoregressive conditional heteroscedasticity
(ARCH)/generalized ARCH (GARCH) models, with attributes such as volatility
clustering and the long-range dependence structure that exist in financial assets;
moreover, these models are based on conditional Gaussian innovations (see Engle,
1982; Bollerslev, 1986). However, empirical evidence has demonstrated that the
conditional normal time series models are inadequate for estimating the tail quantiles
of the conditional return distributions. Substantial empirical evidence shows that the
distribution of financial returns is typically skewed, peaked around the mean
(leptokurtic) and characterized by fat tails. Bollerslev, Engle, and Nelson (1994)
proposed that the leptokurtosis is reduced, but not eliminated, when returns are
standardized using time-varying estimates for the means and variances. This prompts
the gradual adoption of models with heavy-tailed innovations in risk modeling. Many
extensions of the classical GARCH models with heavy-tailed innovations have been
proposed.

Student’s t, generalized error distribution (GED), and a mixture of two normal
distributions are frequently used for describing the non-normal characteristics in the

VaR literature. With regard to the commodity markets, Giot and Laurent (2003)



compared the performance of the RiskMetrics, skewed Student asymmetric power
GARCH (APGARCH), and skewed Student ARCH models for several commodities.
They found that the skewed Student ARCH model delivered excellent results and was
relatively easy to use. Chan et al. (2007) considered a GARCH model with
heavy-tailed innovations and characterized the limiting distribution of an estimator of
the conditional VaR, which corresponds to the external quantile of the conditional
distribution of the GARCH process. Fan et al. (2008) estimated the VaR of the returns
in West Texas Intermediate (WTI) and Brent crude oil spot markets using a
GED-GARCH model. They found this approach to be more realistic and
comprehensive than the commonly used standard normal distribution-based VaR model,
and also more effective than the well-recognized historical simulation with
autoregressive moving average (ARMA) forecasts. Hung et al. (2008) investigated the
fat-tailed innovation process on the VaR estimates, and the empirical results showed
that the GARCH-HT model is quite accurate and efficient in estimating the VaR for
energy commodities.

However, because such distributions partially deal with the issues of
leptokurtosis and skewness, they cannot fully correct the measurement bias in risk
problems (Bali and Theodossiou, 2007). The skew generalized t (SGT) distribution,
introduced by Theodossiou (1998), is a skewed extension of the generalized-t
distribution, originally proposed by McDonald and Newey (1988). The SGT is a
distribution that allows for a very diverse level of skewness and kurtosis, and it has
been used to model the unconditional distribution of daily returns for a variety of
financial assets (Theodossiou, 1998; Harris and Kucukozmen, 2001). Furthermore, the
SGT nests several well-known distributions such as the generalized t (GT) of
MacDonald and Newey (1988); the skewed t (ST) of Hansen (1994); the skewed

generalized error distribution (SGED) of Theodossiou (2001); and the normal, Laplace,



uniform, GED, and student t distributions. Harris et al. (2004) further found that a
conditional SGT distribution offers a substantial improvement in the fit of the GARCH
model for stock index assets. Bali and Theodossiou (2007) proposed a conditional
technique for estimating the VaR and expected shortfall measures on the basis of the
SGT distribution in the S&P 500 index returns. They found that GARCH-type models
with the SGT distribution are much superior to the conditional normal distribution for
all GARCH specifications and all probability levels. Bali et al. (2008) also used the
SGT distribution with time-varying parameters to provide an accurate characterization
of the tail of the standardized equity return distributions. To fill in the gap in the
inadequate research in which the SGT distribution in non-normal commodity returns
has been employed, we use the GARCH-SGT model to model the commodity
volatilities. The analytical and empirical results in this paper could provide better
approximations of reality.

The remainder of this paper is organized as follows. Section 2 describes the
motivation behind focusing on the crude oil and gold markets. Section 3 presents the
methodologies of the GARCH-SGT models and the measurement of the VaR. Section
4 compares the out-of-sample empirical results of the SGT, and the normal distribution

and GED. Section 5 concludes the paper.

IMPORTANCE OF CRUDE OIL AND GOLD

Oil is one of the most important commodities, and almost everything tangible
that we physically move burns oil in the process. One of the characteristics of the oil
market prices is volatility, which is both high and variable over time. In general, oil
prices have become more volatile since 1986 (Plourde and Watkins, 1998; Lynch, 2002;
Regnier, 2007), and this volatility has a significant impact on the global economy (Lee

et al., 1995; Ferderer, 1996; Sadorsky, 1999, 2006). US oil prices have been heavily



regulated through production or price control measures throughout much of the
twentieth century. With the exception of the occasional jump in late 1990, crude oil
prices have risen progressively since the later part of 2001. In January 2008, oil prices
unprecedentedly surpassed $100 a barrel, the first of many price milestones to be
passed in the course of the year. In July 2008, oil prices peaked at $147.30 a barrel. In
the second half of 2008, the prices of most commodities fell dramatically in
anticipation of diminished demand owing to the recent global recession. In fact, these
high prices resulted in a dramatic drop in demand and prices fell below $35 a barrel at
the end of 2008. It is believed that high prices will cause genuine economic damage,
resulting in the threat of stagflation and a reversal of globalization. In July 2009, the
president of the Organization of Petroleum Exporting Countries (OPEC), Jose Maria
Botelho de Vasconcelos, remarked that a crude oil price of $68-$71 a barrel was
optimal for a stable industry. The oil market was very fragile, and crude prices were
susceptible to huge fluctuations caused by minor events. Factors such as high demand,
low supply, strategies adopted by OPEC, environmental regulations, hedge fund
actions, and violence in the Middle East have all stimulated prices. A traditional
demand-based framework was unable to explain the marked deterioration in the
commodity and oil prices (Chaudhuri, 2001). Jalali-Naini and Manesh (2006) also
pointed out that high volatility is a very promising characteristic for testing volatility
models.

Of all the precious metals, gold is the most popular as an investment. Investors
generally buy gold as a hedge or safeguard against any economic, political, social, or
currency-based crises. History has shown that in adverse periods, investors tried to
preserve their assets by investing in precious metals, most notably gold and silver.
Since April 2001, the gold price has more than tripled in value against the US dollar,

prompting speculation that this long secular bear market (or the Great Commodities



Depression) has ended and a bull market has reemerged. In March 2008, the gold price
increased above $1,000. A number of studies have reported on the relationship between
gold and macroeconomic variables (Sherman, 1983; Baker and Van-Tassel, 1985;
Kaufmann and Winters, 1989; Sjaastad and Scacciavillani, 1996; Taylor, 1998;
Christie-David et al., 2000; Cai et al., 2001; Tully and Lucey, 2006). These studies
confirmed that macroeconomic variables such as the exchange rate of dollar, stock
index, interest rate, consumer price index (CPI), and unemployment rate influence gold
returns. In contrast, Lawrence (2003) argued that no significant correlations exist
between gold returns and changes in certain macroeconomic variables.

To address the ambiguous empirical results in measuring the VaR within oil and
gold markets, this paper provides a comprehensive analysis using the flexible SGT
distribution for modeling the volatilities. This paper extends the existing research in oil
and gold markets in four important ways. First, we calculate the VaR on the basis of
the SGT—a distribution that allows for a very diverse level of skewness and
kurtosis—for modeling the distribution of commodity returns. The normal distribution
and GED are the comparable models used to assess the robustness of the SGT
distribution. Second, considering the behavior of highly volatile oil and gold assets, we
employ the GARCH models for estimating the time-varying conditional variance of
returns. Third, we analyze the time-varying scaling parameters of crude oil and gold
assets. It will be easy to observe why traditional distributions are not appropriate for
estimating volatilities and forecasting the VaR. Fourth, this paper investigates the
volatility in the prices—both spot and futures—of oil and gold assets. This paper also
analyzes the performance of out-of-sample forecasting for a long period, covering both
stable and high-fluctuation periods, including the period of the current global financial

crisis. The VaR in the SGT distribution is significantly superior to other distributions.



METHODOLOGY
GARCHY(1,1) Model with Skewed Generalized T Distribution (GARCH-SGT)

This paper investigates GARCH(1,1) model in computing the conditional means
and conditional variances for conditional VaR analysis. The GARCH(1,1) model
proposed by Bollerslev (1986) is as follows:

r,=W,+¢, € ~(0,h) (1)

h =B, +B1ht—lzt2—l +PB,h, ()
where 3, >0, B, >0, B, >0and B, +B, <1. In the equations, p,and h, are the

conditional mean and conditional standard variance of returns r, based on the

information set Q,_, up to time t-1. The standardized error term is z, =g, / Jh, .

Considering the non-normal characteristics of energy assets, the conventional
GARCH model with normal distribution is fail to capture the behavior of
high-volatility of oil and golf assets. SGT distribution, advanced by Theodossiou
(1998), is displaced for well-describing the distribution of assets returns exhibiting
skewness and leptokurtosis. The probability density function for the SGT distribution

can be represented as follows:
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where A is a skewness parameter, “sign” is the sign function, B(*) is the beta function,

and 9§ is the Pearson’s skewness and mode of f(z,). The scaling parameters n, k and A

obey the following constraints: n>2, k>0 and —1<A <1. The skew parameter A
controls the rate of descent of the density around the mode of z. In the case of positive
skewness (A > 0), the density function is skewed to the right. In contrary, the density
function is skew to the left with the negative skewness (A < 0). The parameter n and «
control the tail and height of the density. Smaller values of k and n result in larger
values for the kurtosis (i.e. more leptokurtosis p.d.f.s) and vice versa. The parameter
K (>0) determines the (fat) tail and height or shape (degree of leptokurtosis) of the
distributions (eq., normal for k=2 and Laplace for « =1; thinner tail than normal
for x> 2 wvs. thicker tail than normal for k <2). The parameter n has the degree of
freedom interpretation in the case A =0 and « =2. Moreover, larger positive values
of A result in larger positive values for both skewness and kurtosis (Theodossiou,
1998).

The SGT distribution nests several well-known distributions (see Table 1).
Specifically, it gives for A =0, McDonald's and Newey's(1988) GT distribution; for
k=2, Hansen(1994)'s skewed student's t distribution; for A=0 and k=2, the
student's t distribution; for A =0 and n = oo, the Subbotin(1923)'s power exponential
distribution; for A=0, k=1 and n =0, the Laplace distribution; for A =0, k=2
and n=1, the Cauchy distribution; for A =0, k=2, and n=o, the normal
distribution; and for A =0, k=0, and n =, the uniform distribution. Furthermore,
the conditional version of SGT for k=2 nests the conditional skewed t distribution
of Jondeau and Rockkinger (2003).

The log-likelihood function of the GARCH-SGT model can be written as:

T
LogL = Zln f(z,

SGT Pt
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Measurement and Performance in VaR
Definition and estimation

A VaR model measures market risk for a portfolio of financial assets and
measures the potential loss that a portfolio could lose over a given period of time. The
manager may be interested in making a statement of the following form: “We are p
percent certain that we will lose more than v dollars in the next N days.” The variable

v is the VaR of the portfolio. Mathematically, the function can be expressed as:
p=[f(r)dr, 5)

where f (r) represents the probability density function of return r;, the change in the
value of a portfolio over a certain horizon N days. The one-day-ahead VaR based on

the GARCH-SGT can be calculated as:

VaR?" =f_ (zt;n,K,k)-\/E—E(r) (6)

t+1
where f_(z,;n,k,A) denotes the left quantile at o for SGT distribution' with scaling

parameters n, k¥ and A. The h; is the conditional variance of the GARCH model.

Test of correct conditional coverage

A “failure” is defined as an outcome r, <v,. Intuitively, a “good” VaR
estimators v would be such that Pr(r, <0,) is close to p. The indicator variable is set

as followed,

(7

t

I, if r<vy
0, otherwise

! The quantiles of the SGT distribution with various combinations of shape parameters are calculated
with numerical integration or bootstrapping technique.



The stochastic process {I,} is called the failure process. The VaR forecasts are said to
be efficient of they display correct conditional coverage, that is, E(It\m) =pVt.

Kupeic (1995) develops a test for correct unconditional coverage in the likelihood ratio

(LR) framework. The likelihood ratio statistics is as follows:
LRuc = _210g|:wj| ~ X(Zl) (8)
' (l-m

where p is the tolerance level where VaR measures are estimated, n; (no) is the number

of 1 (0) in the indicator series, and n=n,/(n, +n,), the MLE of p. The null

hypothesis of the failure probability p is tested against the alternative hypothesis that

the failure probability is different from p.

Evaluation using regulatory loss function

The loss function evaluation method proposed based on assigning to VaR
estimates a numerical score that reflects specific regulatory concerns. It provides a
measure of relative performance that can be used to monitor the performance of VaR
estimates. Two regulatory loss functions proposed by Lopez (1998) are described
below.
(1) Binary loss function

If the predicted VaR is not able to cover the realized loss, this is termed a
‘violation’. A binary loss function is merely the reflection of the LR test of
unconditional coverage test and gives a penalty of one to each exception of the VaR.

Namely,

17 if rt+1 < Ut+1
Lt+1 = . (9)
0, otherwise
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If a VaR model truly provides the level of coverage defined by its confidence level,
then the average binary loss function over the full sample will equal p for the (1-p) th

percentile VaR

(2) Quadratic loss function
The quadratic loss function of Lopez (1998) penalizes violations differently from

the binary loss function, and pays attention to the magnitude of the violation. That is,

L = {1+(rt+l _Ut+1)2 b if I < Uy (10)

1o ,ifr, >v

t+1 t+1
The quadratic term ensures that large violations are penalized more than the small
violations which provide a more powerful measure of model accuracy than the binary

loss function.

EMPIRICAL RESULTS
Out-of-sample forecasting performance: Crude oil markets

To assess the forecasting performance with alternative distributions, we first
make estimates on the basis of daily returns for two years, after which the estimation
period is continuously rolled forward by adding the most recent day and excluding the
oldest. Following this process, the out-of-sample VaRs are calculated for the next 1,800
days (from January 2002 to March 2009); the results are illustrated in Figure 2. The
forecasting performance can be analyzed in terms of the integrity of the results for the
long forecasting period, which includes both stable and high volatility periods,
especially through the global financial crisis period from 2007. Tables 3 and 4 list the
out-of-sample forecasting results for crude oil and gold in this paper; Panels A and B

show the spot and futures prices, respectively.
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We first discuss the results of the crude oil spot market. All the statistics are not
significant in the correct unconditional coverage test (LRuc), thus indicating that the
estimated failure probability is statistically consistent with the specified probability of
the model. We then compare the unexpected loss (UL) and the average quadratic loss
function (AQLF?). For the low confidence level (95% VaR), the normal distribution
yields the highest VaR estimates and the lowest failure rates in the AQLF and UL. In
comparison, the failure rates in the GED and SGT distribution are higher for the low
confidence level of 95% VaR. Although these distributions provide a correct coverage
rate, the SGT distribution and GED have lower accuracy than normal distribution.
However, the results are completely different for the high confidence levels (99% and
99.5%). The most correct VaR estimates are with the SGT distribution, whereas the
accuracy and performance with the GED and normal distribution deteriorate and lose
accuracy. A comparison of the AQLF values reveals that the lowest value is 0.0597 and
0.0362 for 99% and 99.5%, respectively, with the SGT distribution; 0.0699 and 0.0445,
respectively, with the GED; and 0.0785 and 0.0542, respectively, with the normal
distribution. It is obvious that the SGT distribution provides the most accurate
out-of-sample forecasts within the strict VaR confidence levels. With regard to the
crude oil futures prices, the SGT distribution shows the best performance in any
confidence level. Part B in Table 3 shows that although all the estimated failure rates
are statistically consistent with the specified probability of the model, the AQLF and
UL are the lowest with the SGT distribution. The best (or lowest) AQLF for 95%, 99%,
and 99.5% VaR is 0.0185, 0.0283, and 0.0119, respectively, with the SGT distribution,

and the inferior AQLF is with the GED; further, the worst (or highest) AQLF is 0.1878,

2 AQLF is the final standard when we select the best model, because large violations are penalized more
than the small violations, and it provides a more powerful measure of model accuracy than other
standards.
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0.0482, and 0.0293, respectively, with the normal distribution. In sum, the skewness
and leptokurtosis result in the improper VaR estimates with the normal distribution.
Next, we illustrate the time-varying scaling parameters in Figure 3 for analyzing
the superiority of the SGT distribution in the crude oil spot prices’. Two lines are
drawn: the solid line indicates the values as on August 9, 2007, and the dotted line
indicates the values as in September 2008. The former date indicates the beginning of
the global financial crisis, which resulted in a liquidity crisis that prompted a
substantial injection of capital into the financial markets by the United States Federal
Reserve, Bank of England, and the European Central Bank. In the latter date,
September 2008, the crisis deepened, as stock markets worldwide crashed and entered
a period of high volatility, and a large number of banks, mortgage lenders, and
insurance companies failed in the subsequent weeks. In the part in the figure indicating
the GED, we can see that the fat-tail parameter (k) is below 2 in the forecasting period,
indicating that the fat-tail exists in the crude oil spot prices. However, the fluctuation of
the parameter k is not large, except in the global financial crisis period when it is
comparatively low. In comparison, an observation of the scaling parameters of the SGT
distribution in Part B of Figure 3 shows that the skewness parameter A is smooth
around 0, thus indicating that the skewness is not very important. However, two
kurtosis parameters (k and n) perform differently in the forecasting period. The first
parameter, k, is very smooth and the average value is close to that of the normal
distribution (i.e., 2), indicating no peakness for the empirical distribution. The second
parameter, n, on the other hand, is very volatile, especially in the beginning of the
global financial crisis. By definition, the smaller values of k and n result in larger
values for the kurtosis, and vice versa, and the SGT distribution is close to the normal

distribution while A =0, k=2, and n=o. We can therefore say that the normal

? The results are shown in terms of crude oil futures prices.
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distribution is appropriate only for the starting year of the global financial crisis and the
fat-tail distribution is more appropriate for other periods. To eliminate the extremely
high value for parameter n, we redraw the scaling parameters in Part C in Figure 3. It
can be clearly seen that the fluctuation in parameter n and the estimated values of the
parameter were not very large except in mid-2003 and early 2004, indicating
significant fat tails for the empirical distribution of standardized returns. This is why
the forecasting performance with the normal distribution was not better than that with

the alternative distributions.

Out-of-sample forecasting performance: Gold markets

Next, we analyze the gold spot market, for all the confidence levels. The
estimated failure rates with the SGT distribution are the only ones that pass the
coverage rate test, LRuc. However, the estimated failure rates with either the normal
distribution or GED are rejected in the LRuc tests. The phenomenon represents the
failure rates in the normal distribution and GED, because the VaRs are statistically
higher than the specific probability of the model. For example, in the normal
distribution, the estimated failure rates are 0.0605, 0.0250, and 0.0183, which are
statistically much higher than the specific probabilities of 0.05, 0.01, and 0.005. The
same results appear in the GED, where the estimated failure rates are 0.0622, 0.0177,
and 0.0083, which significantly exceed the specific probabilities of 0.05, 0.01, and
0.005. Identical results are shown in the AQLF and UL: the values are the lowest with
the SGT distribution irrespective of the confidence level (95%, 99%, and 99.5%). With
regard to the futures market, though the estimated failure rates either with the normal
distribution or GED are fine in 95% VaR, the failure rates are significantly biased in
higher confidence levels (99% and 99.5% VaR). Let us take the normal distribution, for

example. The estimated failure rates are 0.0216 and 0.0161 for 99% and 99.5%
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confidence levels, respectively; these values significantly exceed the specific
probabilities of 0.01 and 0.005, respectively. In comparison, the estimated failure rates
with the SGT distribution pass the coverage rate test in all the confidence levels.
Similar results can be found in the AQLF and UL, and the values with both the normal
distribution and GED are relatively higher than those with the SGT distribution.

We illustrate the time-varying scaling parameters in Figure 4. In the part
indicating the GED in the figure, we see that the fat-tail parameter (k) fluctuates around
2 prior to August 2007; moreover, there is a clear decline in the parameter in the global
financial crisis period. Specifically, in the GED, the fat-tail is more apparent in the
financial crisis period, but not so much in the other periods. In comparison, the scaling
parameters of the SGT distribution in Part B of Figure 4 show that the skewness
parameter A is smooth around 0, indicating that the skewness is not very significant.
However, two kurtosis parameters (k and n) perform differently in the forecasting
period. The first parameter, «, is quite stable in the whole period and the average value
is around 2, whereas the second parameter, n, is relatively volatile as compared to
parameter k. Except for the beginning of 2003 and mid-2007, the value of parameter n
is low, indicating that the kurtosis exists significantly. In comparison, the scaling
parameters in the SGT distribution can appropriately capture the volatility of gold and
they show that the unexpected losses are smaller in the SGT distribution. Figure 5
shows the results of the forecasted VaR. Focusing on the latest period of the global
financial crisis, we can easily observe that the forecasted VaR with the normal
distribution and GED cannot capture the situation of high volatility, and the forecasted
loss increases. However, the forecasted VaR with the SGT distribution is apparently
different: the forecasted errors are relatively much smaller than the alternative

distributions.
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In sum, the forecasted VaR with the SGT distribution provides the most accurate
out-of-sample forecasts either in the crude oil or gold markets. In the crude oil market,
though all the distributions provide the correct coverage rate, the forecasted oil spot
VaR with the normal distribution is only appropriate for the low confidence level, and
the accuracy and performance distributions deteriorate and lose accuracy for the higher
confidence levels. In comparison, the SGT distribution provides the most accurate
out-of-sample forecasts within the strict VaR confidence levels. With regard to the gold
market, the most appropriate distribution for the forecasted VaR is with the SGT
distribution, and the failure rates in the normal distribution and GED for the VaR are
statistically higher than the specific probability of the model. Therefore, the precise

forecasting is the most important reason for adopting the SGT distribution.

CONCLUSION

This paper provides a comprehensive analysis using the flexible SGT
distribution for modeling commodity volatilities and analyzing the time-varying
scaling parameters, including those in the crude oil and gold markets. It also estimates
the VaR within the framework of the GARCH-SGT model. The out-of-sample
forecasting period covers a long period, including the most unsteady period of the
global financial crisis. The empirical results show that the forecasted VaR with the SGT
distribution provides the most accurate out-of-sample forecasts either in the crude oil
or gold markets. In the crude oil market, though all the distributions provide the correct
coverage rate, the forecasted oil spot VaR with the normal distribution is appropriate
only for the low confidence level, and the accuracy and performance distributions
deteriorate and lose accuracy for the higher confidence levels. In comparison, the SGT
distribution provides the most accurate out-of-sample forecasts within the strict VaR

confidence levels. Further, the time-varying parameters in the SGT distribution show
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that two kurtosis parameters (k and n) perform differently in the forecasting period.
The peakness parameter is close to that of the normal distribution (i.e., 2), indicating no
peakness for the empirical distribution. However, the fat-tail characteristic significantly
exists for the empirical distribution of returns. Focusing on the period of the current
global financial crisis, we see that the estimation results of the scaling parameters in the
GED and SGT distribution are totally different: the SGT distribution allows a very
diverse level of skewness and kurtosis, and can capture the volatility more effectively.
This is why the forecasting performance with the normal distribution and GED is not
better than with the SGT distribution.

With regard to the gold markets, the most appropriate distribution for the
forecasted VaR is the SGT distribution, and the failure rates in the normal distribution
and GED for the VaR are statistically higher than the specific probability of the model.
Moreover, the time-varying scaling parameters are similar to crude oil returns. The
skewness parameter is close to 0, indicating that the skewness is not very significant;
the peakness parameter is close to that of the normal distribution, indicating no
peakness for the empirical distribution; and finally, the fat-tail parameter is small,
indicating that the kurtosis significantly exists. Comparatively, the scaling parameters
in the SGT distribution can capture the volatilities of gold effectively and they show
that the unexpected losses are smaller in the SGT distribution. We focused on the latest
period of the global financial crisis and found that the forecasted VaR with the normal
distribution and GED are biased, whereas the SGT distribution can model the high
volatility well. Finally, the estimated VaR within the SGT model is significantly

superior to the other distributions in the crude oil and gold markets.

17



REFERENCE

Ait-Sahalia, Y. and A. Lo, 1998, Nonparametric estimation of state-price densities
implicit in financial asset prices, Journal of Finance, 53(2), 499-547.

Baker, S. A., and R. C. Van-Tassel, 1985, Forecasting the price of gold: A fundamental
approach, Journal of Atlantic Economics, 13, 43-52.
Bali, T. G. and P. Theodossiou, 2007, A conditional-SGT-VaR approach with
alternative GARCH models, Annals of Operations Research, 151(1), 241-267.
Bali, T. G., H. Mo, and Y. Tang, 2008, The role of autoregressive conditional skewness
and kurtosis in the estimation of conditional VaR, Journal of Banking and Finance,
32,269-282.

Bollerslev, T., 1986, Generalized autoregressive conditional heteroskedasticity,
Journal of Economics, 31, 307-327.

Bollerslev, T., 1987, A conditional heteroscedastic time series model for security prices
and rates of return data, Review of Economics and Statistics, 69(3), 542-547.

Bollerslev, T., R. F. Engle, and D. B. Nelson, 1994, ARCH models, In: Robert, Engle,
McFadden, D. L. (Eds.), Handbook of Econometrics, Elseview, Amsterdam.

Busch, T., 2005, Value-at-risk of resource scarcity — The example of oil, Investment
Management and Financial Innovation, #1, 39-56.

Cabedo, J. D. and I. Moya, 2003, Estimating oil price ‘value-at-risk’ using the
historical simulation approach, Energy Economics, 25(3), 239-253.

Cai, J., Y. L. Cheung, and M. C. S. Wong, 2001, What moves the gold market? Journal
of Futures Markets, 21, 257-278.

Casassus, J. and P. Collin-Dufresne, 2005, Stochastic convenience yield implied from
commodity futures and interest rates, Journal of Finance, 60(5), 2283-2331.

Chan, N. H., Deng, S. -J., Peng, L. & Xia, Z. (2007). Interval estimation of

value-at-risk based on GARCH models with heavy-tailed innovations. Journal of

18



Econometrics, 137(2), 556-576.

Chaudhuri, K., (2001) Long-run prices of primary commodities and oil prices, Applied
Economics, 33, 531-538.

Christie-David, R., M. Chaudhry, and T. Koch, 2000, Do macroeconomic news
releases affect gold and silver prices, Journal of Economic Business, 52(5),
405-421.

Engle, R. F. and G. Gonzales-Rivera., 1991, Semiparametric ARCH models, Journal of
Business and Economics Statistics, 9(4), 345-359.

Engle, R. F., 1982, Autoregressive conditional heteroskedasticity with estimates of
variance of United Kingdom inflation, Econometrics, 50(4), 987-1007.

Fan, Y., Y. J. Zhang, H. T. Tsai, and Y. M. Wei, 2008, Estimating ‘Value-at-Risk’ of
crude oil price and its spillover effect using the GED-GARCH approach, Energy
Economics, 30, 3156-3171.

Ferderer, J., 1996, Oil price volatility and macroeconomy. Journal of Macroeconomy,
18(1), 1-26.

Giot, P. and S. Laurent, 2003, Market risk in commodity markets: A VaR approach.
Energy Economics, 25(5), 435-457.

Harris, R. D. F., and C. C. Kucukozmen, 2001, The empirical distribution of UK and
US stock returns, Journal of Business, Finance and Accounting, 28, 715-740.

Harris, R. D. F., C. C. Kucukozmen, and F. Yilmaz, 2004, Skewness in the conditional
distribution of daily equity returns, Applied Financial Economics, 14, 195-202.

Hung, J. C., M. C. Lee, and H. C. Liu, 2008, Estimation of value-at-risk for energy
commodities via fat-tailed GARCH models, Energy Economics, 30, 1173-1191.

Jalali-Naini, A. R. and M. K. Manesh, 2006, Price volatility, hedging and variable risk
premium in the crude oil market, OPEC Review, 30(2), 55-70.

Jondeau, E. and M. Rockinger, 2003, Conditional volatility, skewness, and kurtosis:

19



existence, persistence, and comovements. Journal of Economic Dynamics and
Control, 27(10), 1699-1737.

Kaufmann, T. and R. Winters, 1989, The price of gold: A simple model, Resource
Policy, 15(4), 309-318.

Kupiec, P. H., 1995, Techniques for verifying the accuracy of risk measurement
models, Journal of Derivatives, 3, 73-84.

Lawrence, C., 2003, Why is gold different from other assets? An Empirical
Investigation, World Gold Council, London.

Lee, K., S. Ni and R. A. Ratti, 1995, Oil shocks and the macroeconomy: the role of
price volatility. Energy Journal, 16(4), 39-56.

Lopez, J. A., 1998, Methods for evaluating value-at-risk estimates, FRBNY Economic
Policy Review, Oct, 119-124.

Lynch, M., 2002, Causes of oil volatility, Working paper presented at the 8th
International Energy forum, Osaka.

McDonald, J. and W. Newey, 1988, Partially adaptive estimation of regression models
via the generalized T distribution, Econometric Theory, 4, 428-457.

Plourde, A. and G. Watkins, 1998, Crude oil prices between 1985 and 1994: How
volatile in relation to other commodities? Resource and Energy Economics, 20(3),
245-262.

Regnier, E., 2007, Oil and energy price volatility, Energy Economics, 29(3), 405-427.

Sadeghu, M. and S. Shavvalpour, 2006, Energy risk management and value at risk
modeling, Energy Policy, 34(18), 3367-3373.

Sadorsky, P., 1999, Oil price shocks and stock market activity, Energy Economics,
21(5), 449-469.

Sadorsky, P., 2006, Modeling and forecasting petroleum futures volatility, Energy

Economics, 28(4), 467-488.

20



Sherman, E. J., A Gold pricing model, Journal of Portfolio Management, 9, 68-70,
1983.

Sjaastad, L. A., and F. Scacciavillani, 1996, The price of gold and the exchange rate,
Journal of International Money Finance, 15(6), 879-897.

Solt, M. E. and P. J. Swanson, 1981, On the efficiency of the markets for gold and
silver, Journal of Business, 54(3), 453-478.

Taylor, N. J., 1998, Precious metals and inflation, Applied Financial Economics, 8(2),
201-210.

Theodossiou, P. and L. Trigeorgis, 2003, Option pricing when log-returns are skewed
and leptokurtic, Working paper, School of Business, Rutgers University.

Theodossiou, P., 1998, Financial data and the skewed generalized t distribution,
Management Science, 44(12), 1650-1661.

Tully, E. and B. M. Lucey, 2006, A power GARCH examination of the gold market,

Research in International Business and Finance, 21(2), 316-325.

21



Table 1. The Special Cases of SGT distributions

A K n Notes:
Skew generalized t (SGT) Free Free Free A>0 skew to the right
Skew t (ST) Free 2 Free A<0 skew to the left
Skew GED (SGED) Free Free o
Skew Normal Free 2 ) k>2 thinner tail than normal
Skew Laplace Free 1 o0 k<2 thicker tail than normal
General t (GT) 0 Free Free
Student t 0 2 Free
GED 0 Free o0
Normal 0 2 o0
Laplace 0 1 o'l
Uniform 0 0 0
Table 2. Descriptive Statistics
Mean S.D. Skewness Excess Kurtosis J-B test
Part A. Crude oil
Spot price 49.9529 26.3458 1.2846%* 1.2981%* 795.8244%*
return 0.011 2.661 -0.2766** 4.2950%* 1801.1006**
Futures price 49.9703 26.3638 1.2793%*%* 1.2867** 787.7146**
return 0.0276 2.6552 -0.2082%** 4.0639%* 1602.8249**
Part B. Gold
Spot price 484.8145 208.9687 0.8346** -0.5371** 295.0343%*
return 0.0518 1.8027 -0.2259** 23.0336** 50930.0510**
Futures price 486.2587 209.9169 0.8247** -0.5695%** 292.1880%**
return 0.0511 1.2118 0.0956* 5.0259%** 2427.3922%%*

Notes: J-B test is Jarque-Bera normality test. **and * represent significance under 1% and 10% level.

Table 3. Out-of-sample performance of alternative distributions for crude oil

Part A. Spot
Mean S.D. LRuc ABLF AQLF UL
Normal 95% VaR -3.9992 1.7264 0.0464 0.0511 0.2385 -0.0633
99% VaR -5.7055 2.4509 2.4527 0.0138 0.0785 -0.0185
99.5% VaR  -6.3302 2.7162 1.5697 0.0072 0.0542 -0.0126
GED 95% VaR -3.9632 1.6979 0.0000 0.0500 0.2626 -0.0667
99% VaR -6.0390 2.5028 0.2166 0.0111 0.0699 -0.0172
99.5% VaR  -6.8477 2.8146 1.5697 0.0072 0.0445 -0.0110
SGT 95% VaR -3.9120 1.6634 0.8054 0.0546 0.2616 -0.0681
99% VaR -6.1914 2.4670 0.0485 0.0094 0.0597 -0.0139
99.5% VaR  -7.2397 2.8140 0.1169 0.0055 0.0362 -0.0077
Part B. Futures
Mean S.D. LRuc ABLF AQLF UL
Normal 95% VaR -3.9342 1.6231 0.1041 0.0516 0.1878 -0.0572
99% VaR -5.6043 2.3048 0.8384 0.0122 0.0482 -0.0130
99.5% VaR  -6.2157 2.5544 0.4169 0.0061 0.0293 -0.0082
GED 95% VaR -3.9322 1.6056 0.4124 0.0533 0.1885 -0.0567
99% VaR -5.8702 2.3483 0.5354 0.0083 0.0368 -0.0101
99.5% VaR  -6.6131 2.6327 0.4838 0.0038 0.0199 -0.0061
SGT 95% VaR -3.9221 1.5924 0.0130 0.0494 0.1855 -0.0565
99% VaR -6.0281 2.3227 2.1626 0.0067 0.0283 -0.0092
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99.5% VaR

-6.9432

2.6341

0.0957

0.0044

0.0119

-0.0041

Notes: * represents significance under 1% level. LRuc is the Log-likelihood test for correct
unconditional coverage. ABLF is the average binary loss function. AQLF is the average quadratic loss
function. UL denotes the unexpected loss, which refers to the average dollar loss caused by the failures

of VaR model.

Table 4. Out-of-sample performance of alternative distributions for gold

Part A. Spot
Mean S.D. LRuc ABLF AQLF UL
Normal 95% VaR -2.5769 1.4962 3.9672%* 0.0605 0.3658 -0.0733
99% VaR -3.6759 2.1151 28.8773**  0.0250 0.1984 -0.0322
99.5% VaR  -4.0783 2.3416 38.0757**  0.0183 0.1651 -0.0244
GED 95% VaR -2.4878 1.3122 5.2706** 0.0622 0.3950 -0.0792
99% VaR -4.2121 2.1530 8.9335%* 0.0177 0.1604 -0.0231
99.5% VaR  -4.9446 2.5072 3.3448** 0.0083 0.1187 -0.0146
SGT 95% VaR -2.4837 1.1153 2.4477 0.0587 0.4427 -0.0804
99% VaR -4.5451 1.9566 0.9358 0.0125 0.1669 -0.0211
99.5% VaR  -5.6366 2.4104 0.5503 0.0037 0.1078 -0.0130
Part B. Futures
Mean S.D. LRuc ABLF AQLF UL
Normal 95% VaR -1.8894 0.6966 2.1878 0.0577 0.1329 -0.0459
99% VaR -2.6959 0.9880 18.5572**  0.0216 0.0500 -0.0182
99.5% VaR  -2.9911 1.0947 28.0883**  0.0161 0.0355 -0.0133
GED 95% VaR -1.8807 0.7054 2.1878 0.0577 0.1333 -0.0461
99% VaR -2.9817 1.1008 5.7296%* 0.0161 0.0368 -0.0137
99.5% VaR  -3.4252 1.2600 8.4500%* 0.0105 0.0223 -0.0085
SGT 95% VaR -1.9780 0.8220 0.1156 0.0518 0.1256 -0.0438
99% VaR -3.3187 1.4320 1.8863 0.0135 0.0311 -0.0115
99.5% VaR  -3.9548 1.7703 2.5151 0.0080 0.0171 -0.0061

Notes: ** and * represent significance under 1% and 5% level. LRuc is the Log-likelihood test for
correct unconditional coverage. ABLF is the average binary loss function. AQLF is the average
quadratic loss function. UL denotes the unexpected loss, which refers to the average dollar loss caused

by the failures of VaR model.

Table 5. Descriptive statistics of time-varying scaling parameters

Part A. Crude oil
Spot:  GED ~ kurtosis:
SGT ~ kurtosis:

skew:

Futures: GED ~ kurtosis:
SGT ~ kurtosis:

skew:
Part B. Gold
Spot:  GED ~ kurtosis:
SGT ~ kurtosis:

skew:

Futures: GED ~ kurtosis:

B AR >B AR

SB AR

A

Mean S.D. Min. Max.
1.315 0.198 0.916 1.779
2.347 0.335 1.566 4371
9.993 14.033 3.732 183.453
-0.049 0.044 -0.151 0.101
1.221 0.179 0913 1.585
2.204 0.388 1.444 3.742
87.476 121.474 3.770 363.980
-0.054 0.055 -0.160 0.132
1.898 0.147 1.567 2.289
1.934 0.527 1.062 5.294
4.994 3.405 2.048 70.813
-0.094 0.081 -0.285 0.080
1.531 0.239 1.168 2.244
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SGT ~ kurtosis: « 2.001 0.574 1.065 5.479
n 31.372 68.244 2.001 290.703
skew: A -0.127 0.126 -2.183 0.165
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Figure 1. The time series plot of crude oil and gold
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Figure 2. Forecasted VaR with different distributions in crude oil spot
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Figure 3. The time-varying scaling parameters
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Figure 4. Forecasted VaR with different distributions in gold spot

2.4

2.2

Mn | . ||‘| \

1V g JUALY

:

1
|
|
|
|
|
|
|
1
1
|
|
|
|
|
|
I

1.2

20020111 20020711 20030111 20030711 20040111 20040711 20050111 20050711 20060111 20060711 20070111 20070711 20080111 20080711 20090111

Part A. Kurtosis parameters in GED distribution

80

70

60

50

40

Kurtosis

30

20

20020111 20020830 20030409 20031001 20040517 20041124 20050601 20051205 20060616 20070105 20070717 20080107 20080710 20090123

Part B. Skewness and kurtosis parameters in the SGT distribution
Figure 5. The time-varying scaling parameters
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