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Abstract 
This paper use the flexible skewed generalized t distribution (SGT) to provide an accurate 

characterization of the non-normal of the commodity return distributions, and analyze the 
time-varying scaling parameters, including those in the crude oil and gold markets. We also 
estimate the VaR on the basis of the GARCH-SGT model, the out-of-sample forecasting periods 
covers a long period, including the most unsteady period of the global financial crisis. The 
empirical results show that the forecasted VaR with the SGT distribution provides the most 
accurate out-of-sample forecasts either in the crude oil or gold markets. In the crude oil market, 
though all the distributions provide the correct coverage rate, the forecasted oil spot VaR with the 
normal distribution is appropriate only for the low confidence level, and the accuracy and 
performance deteriorate and lose accuracy for the higher confidence levels. In comparison, the 
SGT distribution provides the most accurate out-of-sample forecasts within the strict VaR 
confidence levels. With regard to the gold markets, the most appropriate distribution for the 
forecasted VaR is the SGT distribution, and the failure rates in the normal distribution and GED 
for the VaR are statistically higher than the specific probability of the model. Comparatively, the 
scaling parameters in the SGT distribution can capture the volatilities of oil and gold effectively 
and they show that the unexpected losses are smaller in the SGT distribution. Finally, the 
estimated VaR within the SGT model is significantly superior to the other distributions in the 
crude oil and gold markets. 
 
Keywords: Skewed generalized t distribution; Commodity volatility; Value-at-Risk 
 
摘要 
本文使用最具包容性之一般化偏態 t 分配(skewed generalized t distribution, SGT)研究商品報

酬非常態之特性，並詳細分析原油及黃金商品報酬隨時間波動之尺度參數。我們同時以

GRACH-SGT 模型估計風險值，且樣本外預測期間極長，涵蓋高度不穩定的全球金融風暴

期間。實證結果顯示不管在原油或是黃金市場，SGT 分配的樣本外預測結果均比其餘分配

要佳。在原油市場，雖然所有的分配在初步階段皆得以提供正確的涵蓋率，但常態分配的

精準度僅在低信賴水準區間出現，且隨著信賴水準的提升，常態分配的準確度及預測績效

則顯著滑落。相對的，SGT 分配則是在高信賴水準區間呈現出最佳的樣本外預測結果。在

黃金市場，SGT 是表現最佳之分配，常態與 GED 分配的風險值估計失敗率皆顯著高於預期

水準。再者，SGT 的尺度參數皆得以有效率的捕捉原油與黃金之報酬波動，且 SGT 分配下

之未預期損失顯著較低。統整而言，在 SGT 分配下估計原油及黃金報酬的風險將顯著優於

其他分配。 
 
關鍵詞：一般化偏態 t 分配、商品波動、風險值 
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INTRODUCTION 
Most time series are characterized by leptokurtosis and skewness, not only in 

financial assets (Bollerslev, 1987; Engle and Gonzales-Rivera, 1991; Ait-Sahalia and 
Lo, 1998; Theodossiou and Trigeorgis, 2003; Bali and Theodossiou, 2007) but also in 
energy assets (Solt and Swanson, 1981; Taylor, 1998; Giot and Laurent, 2003; Chan et 
al., 2007; Fan, 2008). Moreover, empirical evidence has shown that the conditional 
normal time series models are inadequate for estimating the conditional return 
distribution. However, relatively little work has been carried out on modeling and 
estimating volatilities in oil and gold assets by using non-normal distributions, for 
example, in oil markets. Giot and Laurent (2003), Chan et al. (2007), Fan et al. (2008), 
and Hung et al. (2008) comprise the limited body of work that calculate the 
Value-at-Risk (VaR) of commodity assets using non-normal distributions; a majority of 
the studies that measure the volatility of oil returns do so with normal distributions 
(Cabedo and Moya, 2003; Busch, 2005; Sadorsky, 2006; Sadeghu and Shavvalpour, 
2006). Fan et al. (2008) pointed out that it is important to be acquainted with the 
characteristics of oil market risks. However, the available quantitative literatures, for 
example, in the gold market, are very limited. Casassus and Collin-Dufresne (2005) 
recently evaluated the VaR for gold, using a three factor model. This is unfortunate 
given the importance of oil and gold to the global economy. For participating in oil and 
gold markets, it is also crucial to describe the asset prices; however, no appropriate 
method is available for this purpose. Volatility is the principal factor for developing the 
economic and financial models of pricing and hedging, and estimations made under the 
correct specifications of the conditional distribution are more efficient. Therefore, this 
paper utilizes the most flexible distribution to describe the oil and gold volatilities that 
are characterized by leptokurtosis and skewness. 

To measure market risk, the application of the VaR methodology offers 
comprehensive and recapitulative advantages. In practice, a key risk measure based on 
the VaR concept is the conditional VaR, which is the worst possible loss at a given 
confidence level due to adverse market movements over the next reporting period, 
conditional on the current portfolio volatility and market information. Mathematically, 
VaR is defined as a quantile of a probability distribution, used to model an underlying 
portfolio value or its return. It is commonly used in symmetric and normal distributions 
for asset returns. Portfolio VaR is often calculated on the basis of the 
variance-covariance approach, and returns follow the normal distribution. The most 
used models are the classical autoregressive conditional heteroscedasticity 
(ARCH)/generalized ARCH (GARCH) models, with attributes such as volatility 
clustering and the long-range dependence structure that exist in financial assets; 
moreover, these models are based on conditional Gaussian innovations (see Engle, 
1982; Bollerslev, 1986). However, empirical evidence has demonstrated that the 
conditional normal time series models are inadequate for estimating the tail quantiles 
of the conditional return distributions. Substantial empirical evidence shows that the 
distribution of financial returns is typically skewed, peaked around the mean 
(leptokurtic) and characterized by fat tails. Bollerslev, Engle, and Nelson (1994) 
proposed that the leptokurtosis is reduced, but not eliminated, when returns are 
standardized using time-varying estimates for the means and variances. This prompts 
the gradual adoption of models with heavy-tailed innovations in risk modeling. Many 
extensions of the classical GARCH models with heavy-tailed innovations have been 
proposed. 

Student’s t, generalized error distribution (GED), and a mixture of two normal 
distributions are frequently used for describing the non-normal characteristics in the 
VaR literature. With regard to the commodity markets, Giot and Laurent (2003) 
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compared the performance of the RiskMetrics, skewed Student asymmetric power 
GARCH (APGARCH), and skewed Student ARCH models for several commodities. 
They found that the skewed Student ARCH model delivered excellent results and was 
relatively easy to use. Chan et al. (2007) considered a GARCH model with 
heavy-tailed innovations and characterized the limiting distribution of an estimator of 
the conditional VaR, which corresponds to the external quantile of the conditional 
distribution of the GARCH process. Fan et al. (2008) estimated the VaR of the returns 
in West Texas Intermediate (WTI) and Brent crude oil spot markets using a 
GED-GARCH model. They found this approach to be more realistic and 
comprehensive than the commonly used standard normal distribution-based VaR model, 
and also more effective than the well-recognized historical simulation with 
autoregressive moving average (ARMA) forecasts. Hung et al. (2008) investigated the 
fat-tailed innovation process on the VaR estimates, and the empirical results showed 
that the GARCH-HT model is quite accurate and efficient in estimating the VaR for 
energy commodities. 

However, because such distributions partially deal with the issues of 
leptokurtosis and skewness, they cannot fully correct the measurement bias in risk 
problems (Bali and Theodossiou, 2007). The skew generalized t (SGT) distribution, 
introduced by Theodossiou (1998), is a skewed extension of the generalized-t 
distribution, originally proposed by McDonald and Newey (1988). The SGT is a 
distribution that allows for a very diverse level of skewness and kurtosis, and it has 
been used to model the unconditional distribution of daily returns for a variety of 
financial assets (Theodossiou, 1998; Harris and Kucukozmen, 2001). Furthermore, the 
SGT nests several well-known distributions such as the generalized t (GT) of 
MacDonald and Newey (1988); the skewed t (ST) of Hansen (1994); the skewed 
generalized error distribution (SGED) of Theodossiou (2001); and the normal, Laplace, 
uniform, GED, and student t distributions. Harris et al. (2004) further found that a 
conditional SGT distribution offers a substantial improvement in the fit of the GARCH 
model for stock index assets. Bali and Theodossiou (2007) proposed a conditional 
technique for estimating the VaR and expected shortfall measures on the basis of the 
SGT distribution in the S&P 500 index returns. They found that GARCH-type models 
with the SGT distribution are much superior to the conditional normal distribution for 
all GARCH specifications and all probability levels. Bali et al. (2008) also used the 
SGT distribution with time-varying parameters to provide an accurate characterization 
of the tail of the standardized equity return distributions. To fill in the gap in the 
inadequate research in which the SGT distribution in non-normal commodity returns 
has been employed, we use the GARCH-SGT model to model the commodity 
volatilities. The analytical and empirical results in this paper could provide better 
approximations of reality. 

The remainder of this paper is organized as follows. Section 2 describes the 
motivation behind focusing on the crude oil and gold markets. Section 3 presents the 
methodologies of the GARCH-SGT models and the measurement of the VaR. Section 
4 compares the out-of-sample empirical results of the SGT, and the normal distribution 
and GED. Section 5 concludes the paper. 
 
IMPORTANCE OF CRUDE OIL AND GOLD 

Oil is one of the most important commodities, and almost everything tangible 
that we physically move burns oil in the process. One of the characteristics of the oil 
market prices is volatility, which is both high and variable over time. In general, oil 
prices have become more volatile since 1986 (Plourde and Watkins, 1998; Lynch, 2002; 
Regnier, 2007), and this volatility has a significant impact on the global economy (Lee 
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et al., 1995; Ferderer, 1996; Sadorsky, 1999, 2006). US oil prices have been heavily 
regulated through production or price control measures throughout much of the 
twentieth century. With the exception of the occasional jump in late 1990, crude oil 
prices have risen progressively since the later part of 2001. In January 2008, oil prices 
unprecedentedly surpassed $100 a barrel, the first of many price milestones to be 
passed in the course of the year. In July 2008, oil prices peaked at $147.30 a barrel. In 
the second half of 2008, the prices of most commodities fell dramatically in 
anticipation of diminished demand owing to the recent global recession. In fact, these 
high prices resulted in a dramatic drop in demand and prices fell below $35 a barrel at 
the end of 2008. It is believed that high prices will cause genuine economic damage, 
resulting in the threat of stagflation and a reversal of globalization. In July 2009, the 
president of the Organization of Petroleum Exporting Countries (OPEC), Jose Maria 
Botelho de Vasconcelos, remarked that a crude oil price of $68–$71 a barrel was 
optimal for a stable industry. The oil market was very fragile, and crude prices were 
susceptible to huge fluctuations caused by minor events. Factors such as high demand, 
low supply, strategies adopted by OPEC, environmental regulations, hedge fund 
actions, and violence in the Middle East have all stimulated prices. A traditional 
demand-based framework was unable to explain the marked deterioration in the 
commodity and oil prices (Chaudhuri, 2001). Jalali-Naini and Manesh (2006) also 
pointed out that high volatility is a very promising characteristic for testing volatility 
models. 

Of all the precious metals, gold is the most popular as an investment. Investors 
generally buy gold as a hedge or safeguard against any economic, political, social, or 
currency-based crises. History has shown that in adverse periods, investors tried to 
preserve their assets by investing in precious metals, most notably gold and silver. 
Since April 2001, the gold price has more than tripled in value against the US dollar, 
prompting speculation that this long secular bear market (or the Great Commodities 
Depression) has ended and a bull market has reemerged. In March 2008, the gold price 
increased above $1,000. A number of studies have reported on the relationship between 
gold and macroeconomic variables (Sherman, 1983; Baker and Van-Tassel, 1985; 
Kaufmann and Winters, 1989; Sjaastad and Scacciavillani, 1996; Taylor, 1998; 
Christie-David et al., 2000; Cai et al., 2001; Tully and Lucey, 2006). These studies 
confirmed that macroeconomic variables such as the exchange rate of dollar, stock 
index, interest rate, consumer price index (CPI), and unemployment rate influence gold 
returns. In contrast, Lawrence (2003) argued that no significant correlations exist 
between gold returns and changes in certain macroeconomic variables. 

To address the ambiguous empirical results in measuring the VaR within oil and 
gold markets, this paper provides a comprehensive analysis using the flexible SGT 
distribution for modeling the volatilities. This paper extends the existing research in oil 
and gold markets in four important ways. First, we calculate the VaR on the basis of 
the SGT—a distribution that allows for a very diverse level of skewness and 
kurtosis—for modeling the distribution of commodity returns. The normal distribution 
and GED are the comparable models used to assess the robustness of the SGT 
distribution. Second, considering the behavior of highly volatile oil and gold assets, we 
employ the GARCH models for estimating the time-varying conditional variance of 
returns. Third, we analyze the time-varying scaling parameters of crude oil and gold 
assets. It will be easy to observe why traditional distributions are not appropriate for 
estimating volatilities and forecasting the VaR. Fourth, this paper investigates the 
volatility in the prices—both spot and futures—of oil and gold assets. This paper also 
analyzes the performance of out-of-sample forecasting for a long period, covering both 
stable and high-fluctuation periods, including the period of the current global financial 
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crisis. The VaR in the SGT distribution is significantly superior to other distributions. 
 

METHODOLOGY  
GARCH(1,1) Model with Skewed Generalized T Distribution (GARCH-SGT) 

This paper investigates GARCH(1,1) model in computing the conditional means 
and conditional variances for conditional VaR analysis. The GARCH(1,1) model 
proposed by Bollerslev (1986) is as follows:  

tttr ε+μ= , )h,0(~ ttε           (1) 

1t2
2

1t1t10t hβzhββh −−− ++=           (2) 
where 00 >β , 0β1 > , 0β 2 > and 1ββ 21 ≤+ . In the equations, tμ and th are the 
conditional mean and conditional standard variance of returns tr  based on the 

information set 1t−Ω up to time t-1. The standardized error term is ttt hz ε= . 
Considering the non-normal characteristics of energy assets, the conventional 

GARCH model with normal distribution is fail to capture the behavior of 
high-volatility of oil and golf assets. SGT distribution, advanced by Theodossiou 
(1998), is displaced for well-describing the distribution of assets returns exhibiting 
skewness and leptokurtosis. The probability density function for the SGT distribution 
can be represented as follows: 
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where λ is a skewness parameter, “sign” is the sign function, B(·) is the beta function, 
and δ is the Pearson’s skewness and mode of )z(f t . The scaling parameters n, κ and λ 
obey the following constraints: 2n > , 0κ >  and 11 <λ<− . The skew parameter λ 
controls the rate of descent of the density around the mode of z. In the case of positive 
skewness ( 0>λ ), the density function is skewed to the right. In contrary, the density 
function is skew to the left with the negative skewness ( 0<λ ). The parameter n and κ 
control the tail and height of the density. Smaller values of κ and n result in larger 
values for the kurtosis (i.e. more leptokurtosis p.d.f.s) and vice versa. The parameter 
κ  (>0) determines the (fat) tail and height or shape (degree of leptokurtosis) of the 
distributions (eq., normal for 2=κ  and Laplace for 1=κ ; thinner tail than normal 
for 2>κ  vs. thicker tail than normal for 2<κ ). The parameter n has the degree of 
freedom interpretation in the case 0λ =  and 2=κ . Moreover, larger positive values 
of λ result in larger positive values for both skewness and kurtosis (Theodossiou, 
1998).  

The SGT distribution nests several well-known distributions (see Table 1). 
Specifically, it gives for 0λ = , McDonald's and Newey's(1988) GT distribution; for 

2=κ , Hansen(1994)'s skewed student's t distribution; for 0λ =  and 2=κ , the 
student's t distribution; for 0λ =  and ∞=n , the Subbotin(1923)'s power exponential 
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distribution; for 0λ = , 1κ =  and ∞=n , the Laplace distribution; for 0λ = , 2=κ  
and 1n = , the Cauchy distribution; for 0λ = , 2=κ , and ∞=n , the normal 
distribution; and for 0λ = , ∞=κ , and ∞=n , the uniform distribution. Furthermore, 
the conditional version of SGT for 2=κ  nests the conditional skewed t distribution 
of Jondeau and Rockkinger (2003). 

The log-likelihood function of the GARCH-SGT model can be written as: 

),,nz(flnLogL
T

1t
t

SGT
∑
=

λκ=           (4) 

 
Measurement and Performance in VaR 
Definition and estimation 

A VaR model measures market risk for a portfolio of financial assets and 
measures the potential loss that a portfolio could lose over a given period of time. The 
manager may be interested in making a statement of the following form: “We are p 
percent certain that we will lose more than υ dollars in the next N days.” The variable 
υt is the VaR of the portfolio. Mathematically, the function can be expressed as: 

∫
υ

∞−

=
t

dr)r(fp t ,             (5) 

where )r(f t  represents the probability density function of return rt, the change in the 
value of a portfolio over a certain horizon N days. The one-day-ahead VaR based on 
the GARCH-SGT can be calculated as: 

)r(Eh),,n;z(fVaR tt
SGT

1t −⋅λκ= α+         (6) 
where ),,n;z(f t λκα  denotes the left quantile at α for SGT distribution1 with scaling 
parameters n, κ  and λ . The ht is the conditional variance of the GARCH model. 

 
Test of correct conditional coverage 

A “failure” is defined as an outcome ttr υ< . Intuitively, a “good” VaR 
estimators υt would be such that )ˆrPr( tt υ<  is close to p. The indicator variable is set 
as followed,  

⎩
⎨
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=
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rif,1
I tt

t            (7) 

The stochastic process { }tI  is called the failure process. The VaR forecasts are said to 
be efficient of they display correct conditional coverage, that is, tp)I(E 1tt ∀=− . 
Kupeic (1995) develops a test for correct unconditional coverage in the likelihood ratio 
(LR) framework. The likelihood ratio statistics is as follows: 
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where p is the tolerance level where VaR measures are estimated, n1 (n0) is the number 
of 1 (0) in the indicator series, and )nn/(nˆ 011 +=π , the MLE of p. The null 
hypothesis of the failure probability p is tested against the alternative hypothesis that 
the failure probability is different from p.  
 
Evaluation using regulatory loss function 
                                                 
1 The quantiles of the SGT distribution with various combinations of shape parameters are calculated 

with numerical integration or bootstrapping technique. 
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The loss function evaluation method proposed based on assigning to VaR 
estimates a numerical score that reflects specific regulatory concerns. It provides a 
measure of relative performance that can be used to monitor the performance of VaR 
estimates. Two regulatory loss functions proposed by Lopez (1998) are described 
below. 
(1) Binary loss function 

If the predicted VaR is not able to cover the realized loss, this is termed a 
‘violation’. A binary loss function is merely the reflection of the LR test of 
unconditional coverage test and gives a penalty of one to each exception of the VaR. 
Namely, 

⎩
⎨
⎧ υ<

= ++
+ otherwise,0

rif,1
L 1t1t

1t           (9) 

If a VaR model truly provides the level of coverage defined by its confidence level, 
then the average binary loss function over the full sample will equal p for the (1-p) th 
percentile VaR 
 
(2) Quadratic loss function  

The quadratic loss function of Lopez (1998) penalizes violations differently from 
the binary loss function, and pays attention to the magnitude of the violation. That is, 

⎩
⎨
⎧

υ≥
υ<υ−+

=
++

++++
+

1t1t

1t1t
2

1t1t
1t r if,0

r if  , )r(1
L         (10) 

The quadratic term ensures that large violations are penalized more than the small 
violations which provide a more powerful measure of model accuracy than the binary 
loss function. 

 
EMPIRICAL RESULTS 
Out-of-sample forecasting performance: Crude oil markets 

To assess the forecasting performance with alternative distributions, we first 
make estimates on the basis of daily returns for two years, after which the estimation 
period is continuously rolled forward by adding the most recent day and excluding the 
oldest. Following this process, the out-of-sample VaRs are calculated for the next 1,800 
days (from January 2002 to March 2009); the results are illustrated in Figure 2. The 
forecasting performance can be analyzed in terms of the integrity of the results for the 
long forecasting period, which includes both stable and high volatility periods, 
especially through the global financial crisis period from 2007. Tables 3 and 4 list the 
out-of-sample forecasting results for crude oil and gold in this paper; Panels A and B 
show the spot and futures prices, respectively. 

We first discuss the results of the crude oil spot market. All the statistics are not 
significant in the correct unconditional coverage test (LRuc), thus indicating that the 
estimated failure probability is statistically consistent with the specified probability of 
the model. We then compare the unexpected loss (UL) and the average quadratic loss 
function (AQLF2). For the low confidence level (95% VaR), the normal distribution 
yields the highest VaR estimates and the lowest failure rates in the AQLF and UL. In 
comparison, the failure rates in the GED and SGT distribution are higher for the low 
confidence level of 95% VaR. Although these distributions provide a correct coverage 
rate, the SGT distribution and GED have lower accuracy than normal distribution. 
                                                 
2 AQLF is the final standard when we select the best model, because large violations are penalized more 
than the small violations, and it provides a more powerful measure of model accuracy than other 
standards. 
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However, the results are completely different for the high confidence levels (99% and 
99.5%). The most correct VaR estimates are with the SGT distribution, whereas the 
accuracy and performance with the GED and normal distribution deteriorate and lose 
accuracy. A comparison of the AQLF values reveals that the lowest value is 0.0597 and 
0.0362 for 99% and 99.5%, respectively, with the SGT distribution; 0.0699 and 0.0445, 
respectively, with the GED; and 0.0785 and 0.0542, respectively, with the normal 
distribution. It is obvious that the SGT distribution provides the most accurate 
out-of-sample forecasts within the strict VaR confidence levels. With regard to the 
crude oil futures prices, the SGT distribution shows the best performance in any 
confidence level. Part B in Table 3 shows that although all the estimated failure rates 
are statistically consistent with the specified probability of the model, the AQLF and 
UL are the lowest with the SGT distribution. The best (or lowest) AQLF for 95%, 99%, 
and 99.5% VaR is 0.0185, 0.0283, and 0.0119, respectively, with the SGT distribution, 
and the inferior AQLF is with the GED; further, the worst (or highest) AQLF is 0.1878, 
0.0482, and 0.0293, respectively, with the normal distribution. In sum, the skewness 
and leptokurtosis result in the improper VaR estimates with the normal distribution. 

Next, we illustrate the time-varying scaling parameters in Figure 3 for analyzing 
the superiority of the SGT distribution in the crude oil spot prices3. Two lines are 
drawn: the solid line indicates the values as on August 9, 2007, and the dotted line 
indicates the values as in September 2008. The former date indicates the beginning of 
the global financial crisis, which resulted in a liquidity crisis that prompted a 
substantial injection of capital into the financial markets by the United States Federal 
Reserve, Bank of England, and the European Central Bank. In the latter date, 
September 2008, the crisis deepened, as stock markets worldwide crashed and entered 
a period of high volatility, and a large number of banks, mortgage lenders, and 
insurance companies failed in the subsequent weeks. In the part in the figure indicating 
the GED, we can see that the fat-tail parameter (κ) is below 2 in the forecasting period, 
indicating that the fat-tail exists in the crude oil spot prices. However, the fluctuation of 
the parameter κ is not large, except in the global financial crisis period when it is 
comparatively low. In comparison, an observation of the scaling parameters of the SGT 
distribution in Part B of Figure 3 shows that the skewness parameter λ is smooth 
around 0, thus indicating that the skewness is not very important. However, two 
kurtosis parameters (κ and n) perform differently in the forecasting period. The first 
parameter, κ, is very smooth and the average value is close to that of the normal 
distribution (i.e., 2), indicating no peakness for the empirical distribution. The second 
parameter, n, on the other hand, is very volatile, especially in the beginning of the 
global financial crisis. By definition, the smaller values of κ and n result in larger 
values for the kurtosis, and vice versa, and the SGT distribution is close to the normal 
distribution while 0λ = , 2=κ , and ∞=n . We can therefore say that the normal 
distribution is appropriate only for the starting year of the global financial crisis and the 
fat-tail distribution is more appropriate for other periods. To eliminate the extremely 
high value for parameter n, we redraw the scaling parameters in Part C in Figure 3. It 
can be clearly seen that the fluctuation in parameter n and the estimated values of the 
parameter were not very large except in mid-2003 and early 2004, indicating 
significant fat tails for the empirical distribution of standardized returns. This is why 
the forecasting performance with the normal distribution was not better than that with 
the alternative distributions. 

 
Out-of-sample forecasting performance: Gold markets 
                                                 
3 The results are shown in terms of crude oil futures prices. 
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Next, we analyze the gold spot market, for all the confidence levels. The 
estimated failure rates with the SGT distribution are the only ones that pass the 
coverage rate test, LRuc. However, the estimated failure rates with either the normal 
distribution or GED are rejected in the LRuc tests. The phenomenon represents the 
failure rates in the normal distribution and GED, because the VaRs are statistically 
higher than the specific probability of the model. For example, in the normal 
distribution, the estimated failure rates are 0.0605, 0.0250, and 0.0183, which are 
statistically much higher than the specific probabilities of 0.05, 0.01, and 0.005. The 
same results appear in the GED, where the estimated failure rates are 0.0622, 0.0177, 
and 0.0083, which significantly exceed the specific probabilities of 0.05, 0.01, and 
0.005. Identical results are shown in the AQLF and UL: the values are the lowest with 
the SGT distribution irrespective of the confidence level (95%, 99%, and 99.5%). With 
regard to the futures market, though the estimated failure rates either with the normal 
distribution or GED are fine in 95% VaR, the failure rates are significantly biased in 
higher confidence levels (99% and 99.5% VaR). Let us take the normal distribution, for 
example. The estimated failure rates are 0.0216 and 0.0161 for 99% and 99.5% 
confidence levels, respectively; these values significantly exceed the specific 
probabilities of 0.01 and 0.005, respectively. In comparison, the estimated failure rates 
with the SGT distribution pass the coverage rate test in all the confidence levels. 
Similar results can be found in the AQLF and UL, and the values with both the normal 
distribution and GED are relatively higher than those with the SGT distribution. 

We illustrate the time-varying scaling parameters in Figure 4. In the part 
indicating the GED in the figure, we see that the fat-tail parameter (κ) fluctuates around 
2 prior to August 2007; moreover, there is a clear decline in the parameter in the global 
financial crisis period. Specifically, in the GED, the fat-tail is more apparent in the 
financial crisis period, but not so much in the other periods. In comparison, the scaling 
parameters of the SGT distribution in Part B of Figure 4 show that the skewness 
parameter λ is smooth around 0, indicating that the skewness is not very significant. 
However, two kurtosis parameters (κ and n) perform differently in the forecasting 
period. The first parameter, κ, is quite stable in the whole period and the average value 
is around 2, whereas the second parameter, n, is relatively volatile as compared to 
parameter κ. Except for the beginning of 2003 and mid-2007, the value of parameter n 
is low, indicating that the kurtosis exists significantly. In comparison, the scaling 
parameters in the SGT distribution can appropriately capture the volatility of gold and 
they show that the unexpected losses are smaller in the SGT distribution. Figure 5 
shows the results of the forecasted VaR. Focusing on the latest period of the global 
financial crisis, we can easily observe that the forecasted VaR with the normal 
distribution and GED cannot capture the situation of high volatility, and the forecasted 
loss increases. However, the forecasted VaR with the SGT distribution is apparently 
different: the forecasted errors are relatively much smaller than the alternative 
distributions. 

In sum, the forecasted VaR with the SGT distribution provides the most accurate 
out-of-sample forecasts either in the crude oil or gold markets. In the crude oil market, 
though all the distributions provide the correct coverage rate, the forecasted oil spot 
VaR with the normal distribution is only appropriate for the low confidence level, and 
the accuracy and performance distributions deteriorate and lose accuracy for the higher 
confidence levels. In comparison, the SGT distribution provides the most accurate 
out-of-sample forecasts within the strict VaR confidence levels. With regard to the gold 
market, the most appropriate distribution for the forecasted VaR is with the SGT 
distribution, and the failure rates in the normal distribution and GED for the VaR are 
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statistically higher than the specific probability of the model. Therefore, the precise 
forecasting is the most important reason for adopting the SGT distribution. 
 
CONCLUSION 

This paper provides a comprehensive analysis using the flexible SGT 
distribution for modeling commodity volatilities and analyzing the time-varying 
scaling parameters, including those in the crude oil and gold markets. It also estimates 
the VaR within the framework of the GARCH-SGT model. The out-of-sample 
forecasting period covers a long period, including the most unsteady period of the 
global financial crisis. The empirical results show that the forecasted VaR with the SGT 
distribution provides the most accurate out-of-sample forecasts either in the crude oil 
or gold markets. In the crude oil market, though all the distributions provide the correct 
coverage rate, the forecasted oil spot VaR with the normal distribution is appropriate 
only for the low confidence level, and the accuracy and performance distributions 
deteriorate and lose accuracy for the higher confidence levels. In comparison, the SGT 
distribution provides the most accurate out-of-sample forecasts within the strict VaR 
confidence levels. Further, the time-varying parameters in the SGT distribution show 
that two kurtosis parameters (κ and n) perform differently in the forecasting period. 
The peakness parameter is close to that of the normal distribution (i.e., 2), indicating no 
peakness for the empirical distribution. However, the fat-tail characteristic significantly 
exists for the empirical distribution of returns. Focusing on the period of the current 
global financial crisis, we see that the estimation results of the scaling parameters in the 
GED and SGT distribution are totally different: the SGT distribution allows a very 
diverse level of skewness and kurtosis, and can capture the volatility more effectively. 
This is why the forecasting performance with the normal distribution and GED is not 
better than with the SGT distribution. 

With regard to the gold markets, the most appropriate distribution for the 
forecasted VaR is the SGT distribution, and the failure rates in the normal distribution 
and GED for the VaR are statistically higher than the specific probability of the model. 
Moreover, the time-varying scaling parameters are similar to crude oil returns. The 
skewness parameter is close to 0, indicating that the skewness is not very significant; 
the peakness parameter is close to that of the normal distribution, indicating no 
peakness for the empirical distribution; and finally, the fat-tail parameter is small, 
indicating that the kurtosis significantly exists. Comparatively, the scaling parameters 
in the SGT distribution can capture the volatilities of gold effectively and they show 
that the unexpected losses are smaller in the SGT distribution. We focused on the latest 
period of the global financial crisis and found that the forecasted VaR with the normal 
distribution and GED are biased, whereas the SGT distribution can model the high 
volatility well. Finally, the estimated VaR within the SGT model is significantly 
superior to the other distributions in the crude oil and gold markets. 
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Table 1. The Special Cases of SGT distributions 
 λ κ n Notes: 
Skew generalized t (SGT) Free Free Free λ > 0  skew to the right 
Skew t (ST) Free 2 Free λ < 0  skew to the left 
Skew GED (SGED) Free Free ∞  
Skew Normal Free 2 ∞ κ > 2  thinner tail than normal 
Skew Laplace Free 1 ∞ κ < 2  thicker tail than normal 
General t (GT) 0 Free Free  
Student t 0 2 Free  
GED 0 Free ∞  
Normal 0 2 ∞  
Laplace 0 1 ∞  
Uniform 0 ∞ ∞  
 
Table 2. Descriptive Statistics 

 Mean S.D.  Skewness Excess Kurtosis J-B test 
Part A. Crude oil      

Spot price 49.9529 26.3458 1.2846** 1.2981** 795.8244** 
return 0.011 2.661 -0.2766** 4.2950** 1801.1006**

      
Futures price 49.9703 26.3638 1.2793** 1.2867** 787.7146** 

return 0.0276 2.6552 -0.2082** 4.0639** 1602.8249**
      
Part B. Gold       

Spot price 484.8145 208.9687 0.8346** -0.5371** 295.0343** 
return 0.0518 1.8027 -0.2259** 23.0336** 50930.0510**

      
Futures price 486.2587 209.9169 0.8247** -0.5695** 292.1880** 

return 0.0511 1.2118 0.0956* 5.0259** 2427.3922**
 Notes: J-B test is Jarque-Bera normality test. **and * represent significance under 1% and 10% level. 
 
Table 3. Out-of-sample performance of alternative distributions for crude oil  
Part A. Spot       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -3.9992 1.7264 0.0464 0.0511 0.2385 -0.0633
 99% VaR -5.7055 2.4509 2.4527 0.0138 0.0785 -0.0185
 99.5% VaR -6.3302 2.7162 1.5697 0.0072 0.0542 -0.0126
        

GED 95% VaR -3.9632 1.6979 0.0000 0.0500 0.2626 -0.0667
 99% VaR -6.0390 2.5028 0.2166 0.0111 0.0699 -0.0172
 99.5% VaR -6.8477 2.8146 1.5697 0.0072 0.0445 -0.0110
        

SGT 95% VaR -3.9120 1.6634 0.8054 0.0546 0.2616 -0.0681
 99% VaR -6.1914 2.4670 0.0485 0.0094 0.0597 -0.0139
 99.5% VaR -7.2397 2.8140 0.1169 0.0055 0.0362 -0.0077

        
Part B. Futures       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -3.9342 1.6231 0.1041 0.0516 0.1878 -0.0572
 99% VaR -5.6043 2.3048 0.8384 0.0122 0.0482 -0.0130
 99.5% VaR -6.2157 2.5544 0.4169 0.0061 0.0293 -0.0082
        

GED 95% VaR -3.9322 1.6056 0.4124 0.0533 0.1885 -0.0567
 99% VaR -5.8702 2.3483 0.5354 0.0083 0.0368 -0.0101
 99.5% VaR -6.6131 2.6327 0.4838 0.0038 0.0199 -0.0061
        

SGT 95% VaR -3.9221 1.5924 0.0130 0.0494 0.1855 -0.0565
 99% VaR -6.0281 2.3227 2.1626 0.0067 0.0283 -0.0092
 99.5% VaR -6.9432 2.6341 0.0957 0.0044 0.0119 -0.0041

Notes: * represents significance under 1% level. LRuc is the Log-likelihood test for correct 
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unconditional coverage. ABLF is the average binary loss function. AQLF is the average quadratic loss 
function. UL denotes the unexpected loss, which refers to the average dollar loss caused by the failures 
of VaR model. 
 
Table 4. Out-of-sample performance of alternative distributions for gold  
Part A. Spot       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -2.5769 1.4962 3.9672* 0.0605 0.3658 -0.0733
 99% VaR -3.6759 2.1151 28.8773** 0.0250 0.1984 -0.0322
 99.5% VaR -4.0783 2.3416 38.0757** 0.0183 0.1651 -0.0244
        

GED 95% VaR -2.4878 1.3122 5.2706** 0.0622 0.3950 -0.0792
 99% VaR -4.2121 2.1530 8.9335** 0.0177 0.1604 -0.0231
 99.5% VaR -4.9446 2.5072 3.3448** 0.0083 0.1187 -0.0146
        

SGT 95% VaR -2.4837 1.1153 2.4477 0.0587 0.4427 -0.0804
 99% VaR -4.5451 1.9566 0.9358 0.0125 0.1669 -0.0211
 99.5% VaR -5.6366 2.4104 0.5503 0.0037 0.1078 -0.0130

        
Part B. Futures       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -1.8894 0.6966 2.1878 0.0577 0.1329 -0.0459
 99% VaR -2.6959 0.9880 18.5572** 0.0216 0.0500 -0.0182
 99.5% VaR -2.9911 1.0947 28.0883** 0.0161 0.0355 -0.0133
        

GED 95% VaR -1.8807 0.7054 2.1878 0.0577 0.1333 -0.0461
 99% VaR -2.9817 1.1008 5.7296* 0.0161 0.0368 -0.0137
 99.5% VaR -3.4252 1.2600 8.4500** 0.0105 0.0223 -0.0085
        

SGT 95% VaR -1.9780 0.8220 0.1156 0.0518 0.1256 -0.0438
 99% VaR -3.3187 1.4320 1.8863 0.0135 0.0311 -0.0115
 99.5% VaR -3.9548 1.7703 2.5151 0.0080 0.0171 -0.0061

Notes: ** and * represent significance under 1% and 5% level. LRuc is the Log-likelihood test for 
correct unconditional coverage. ABLF is the average binary loss function. AQLF is the average 
quadratic loss function. UL denotes the unexpected loss, which refers to the average dollar loss caused 
by the failures of VaR model. 
 
Table 5. Descriptive statistics of time-varying scaling parameters 

 Mean S.D. Min. Max. 
Part A. Crude oil     

Spot:   GED ~ kurtosis: κ  1.315 0.198 0.916 1.779 
SGT ~ kurtosis: κ  2.347 0.335 1.566 4.371 

n 9.993 14.033 3.732 183.453
skew:   λ  -0.049 0.044 -0.151 0.101 

     
Futures: GED ~ kurtosis: κ  1.221 0.179 0.913 1.585 

SGT ~ kurtosis: κ  2.204 0.388 1.444 3.742 
n 87.476 121.474 3.770 363.980

skew:   λ  -0.054 0.055 -0.160 0.132 
     
Part B. Gold     

Spot:   GED ~ kurtosis: κ  1.898 0.147 1.567 2.289 
SGT ~ kurtosis: κ  1.934 0.527 1.062 5.294 

n 4.994 3.405 2.048 70.813
skew:   λ  -0.094 0.081 -0.285 0.080 

     
Futures: GED ~ kurtosis: κ  1.531 0.239 1.168 2.244 

SGT ~ kurtosis: κ  2.001 0.574 1.065 5.479 
n 31.372 68.244 2.001 290.703

skew:   λ  -0.127 0.126 -2.183 0.165 
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Figure 1. The time series plot of crude oil and gold 
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Part A. GED distributions 
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Part B. Normal distributions 
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Part C. SGT distribution 
Figure 2. Forecasted VaR with different distributions in crude oil spot 
 

0.8

1

1.2

1.4

1.6

1.8

2

20020111 20020711 20030111 20030711 20040111 20040711 20050111 20050711 20060111 20060711 20070111 20070711 20080111 20080711 20090111

 
Part A. Kurtosis parameter in the GED distribution 
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Part B. Skewness and kurtosis parameters in the SGT distribution 
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Part C. Skewness and kurtosis parameters in the SGT distribution exclude the period of global financial 
crisis 
Figure 3. The time-varying scaling parameters  
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Part A. GED distribution 
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Part B. Normal distribution 
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Part C. SGT distribution 
Figure 4. Forecasted VaR with different distributions in gold spot 
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Part A. Kurtosis parameters in GED distribution 
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Part B. Skewness and kurtosis parameters in the SGT distribution 
Figure 5. The time-varying scaling parameters  
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Abstract 

This paper use the flexible skewed generalized t distribution (SGT) to provide an 

accurate characterization of the non-normal of the commodity return distributions, and 

analyze the time-varying scaling parameters, including those in the crude oil and gold 

markets. We also estimate the VaR on the basis of the GARCH-SGT model, the 

out-of-sample forecasting periods covers a long period, including the most unsteady 

period of the global financial crisis. The empirical results show that the forecasted VaR 

with the SGT distribution provides the most accurate out-of-sample forecasts either in 

the crude oil or gold markets. In the crude oil market, though all the distributions 

provide the correct coverage rate, the forecasted oil spot VaR with the normal 

distribution is appropriate only for the low confidence level, and the accuracy and 

performance deteriorate and lose accuracy for the higher confidence levels. In 

comparison, the SGT distribution provides the most accurate out-of-sample forecasts 

within the strict VaR confidence levels. With regard to the gold markets, the most 

appropriate distribution for the forecasted VaR is the SGT distribution, and the failure 

rates in the normal distribution and GED for the VaR are statistically higher than the 

specific probability of the model. Comparatively, the scaling parameters in the SGT 

distribution can capture the volatilities of oil and gold effectively and they show that 

the unexpected losses are smaller in the SGT distribution. Finally, the estimated VaR 

within the SGT model is significantly superior to the other distributions in the crude oil 

and gold markets. 

 
Keywords: Skewed generalized t distribution; Commodity volatility; Value-at-Risk
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INTRODUCTION 

Most time series are characterized by leptokurtosis and skewness, not only in 

financial assets (Bollerslev, 1987; Engle and Gonzales-Rivera, 1991; Ait-Sahalia and 

Lo, 1998; Theodossiou and Trigeorgis, 2003; Bali and Theodossiou, 2007) but also in 

energy assets (Solt and Swanson, 1981; Taylor, 1998; Giot and Laurent, 2003; Chan et 

al., 2007; Fan, 2008). Moreover, empirical evidence has shown that the conditional 

normal time series models are inadequate for estimating the conditional return 

distribution. However, relatively little work has been carried out on modeling and 

estimating volatilities in oil and gold assets by using non-normal distributions, for 

example, in oil markets. Giot and Laurent (2003), Chan et al. (2007), Fan et al. (2008), 

and Hung et al. (2008) comprise the limited body of work that calculate the 

Value-at-Risk (VaR) of commodity assets using non-normal distributions; a majority of 

the studies that measure the volatility of oil returns do so with normal distributions 

(Cabedo and Moya, 2003; Busch, 2005; Sadorsky, 2006; Sadeghu and Shavvalpour, 

2006). Fan et al. (2008) pointed out that it is important to be acquainted with the 

characteristics of oil market risks. However, the available quantitative literatures, for 

example, in the gold market, are very limited. Casassus and Collin-Dufresne (2005) 

recently evaluated the VaR for gold, using a three factor model. This is unfortunate 

given the importance of oil and gold to the global economy. For participating in oil and 

gold markets, it is also crucial to describe the asset prices; however, no appropriate 

method is available for this purpose. Volatility is the principal factor for developing the 

economic and financial models of pricing and hedging, and estimations made under the 

correct specifications of the conditional distribution are more efficient. Therefore, this 

paper utilizes the most flexible distribution to describe the oil and gold volatilities that 

are characterized by leptokurtosis and skewness. 
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To measure market risk, the application of the VaR methodology offers 

comprehensive and recapitulative advantages. In practice, a key risk measure based on 

the VaR concept is the conditional VaR, which is the worst possible loss at a given 

confidence level due to adverse market movements over the next reporting period, 

conditional on the current portfolio volatility and market information. Mathematically, 

VaR is defined as a quantile of a probability distribution, used to model an underlying 

portfolio value or its return. It is commonly used in symmetric and normal distributions 

for asset returns. Portfolio VaR is often calculated on the basis of the 

variance-covariance approach, and returns follow the normal distribution. The most 

used models are the classical autoregressive conditional heteroscedasticity 

(ARCH)/generalized ARCH (GARCH) models, with attributes such as volatility 

clustering and the long-range dependence structure that exist in financial assets; 

moreover, these models are based on conditional Gaussian innovations (see Engle, 

1982; Bollerslev, 1986). However, empirical evidence has demonstrated that the 

conditional normal time series models are inadequate for estimating the tail quantiles 

of the conditional return distributions. Substantial empirical evidence shows that the 

distribution of financial returns is typically skewed, peaked around the mean 

(leptokurtic) and characterized by fat tails. Bollerslev, Engle, and Nelson (1994) 

proposed that the leptokurtosis is reduced, but not eliminated, when returns are 

standardized using time-varying estimates for the means and variances. This prompts 

the gradual adoption of models with heavy-tailed innovations in risk modeling. Many 

extensions of the classical GARCH models with heavy-tailed innovations have been 

proposed. 

Student’s t, generalized error distribution (GED), and a mixture of two normal 

distributions are frequently used for describing the non-normal characteristics in the 

VaR literature. With regard to the commodity markets, Giot and Laurent (2003) 
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compared the performance of the RiskMetrics, skewed Student asymmetric power 

GARCH (APGARCH), and skewed Student ARCH models for several commodities. 

They found that the skewed Student ARCH model delivered excellent results and was 

relatively easy to use. Chan et al. (2007) considered a GARCH model with 

heavy-tailed innovations and characterized the limiting distribution of an estimator of 

the conditional VaR, which corresponds to the external quantile of the conditional 

distribution of the GARCH process. Fan et al. (2008) estimated the VaR of the returns 

in West Texas Intermediate (WTI) and Brent crude oil spot markets using a 

GED-GARCH model. They found this approach to be more realistic and 

comprehensive than the commonly used standard normal distribution-based VaR model, 

and also more effective than the well-recognized historical simulation with 

autoregressive moving average (ARMA) forecasts. Hung et al. (2008) investigated the 

fat-tailed innovation process on the VaR estimates, and the empirical results showed 

that the GARCH-HT model is quite accurate and efficient in estimating the VaR for 

energy commodities. 

However, because such distributions partially deal with the issues of 

leptokurtosis and skewness, they cannot fully correct the measurement bias in risk 

problems (Bali and Theodossiou, 2007). The skew generalized t (SGT) distribution, 

introduced by Theodossiou (1998), is a skewed extension of the generalized-t 

distribution, originally proposed by McDonald and Newey (1988). The SGT is a 

distribution that allows for a very diverse level of skewness and kurtosis, and it has 

been used to model the unconditional distribution of daily returns for a variety of 

financial assets (Theodossiou, 1998; Harris and Kucukozmen, 2001). Furthermore, the 

SGT nests several well-known distributions such as the generalized t (GT) of 

MacDonald and Newey (1988); the skewed t (ST) of Hansen (1994); the skewed 

generalized error distribution (SGED) of Theodossiou (2001); and the normal, Laplace, 



 

4 

uniform, GED, and student t distributions. Harris et al. (2004) further found that a 

conditional SGT distribution offers a substantial improvement in the fit of the GARCH 

model for stock index assets. Bali and Theodossiou (2007) proposed a conditional 

technique for estimating the VaR and expected shortfall measures on the basis of the 

SGT distribution in the S&P 500 index returns. They found that GARCH-type models 

with the SGT distribution are much superior to the conditional normal distribution for 

all GARCH specifications and all probability levels. Bali et al. (2008) also used the 

SGT distribution with time-varying parameters to provide an accurate characterization 

of the tail of the standardized equity return distributions. To fill in the gap in the 

inadequate research in which the SGT distribution in non-normal commodity returns 

has been employed, we use the GARCH-SGT model to model the commodity 

volatilities. The analytical and empirical results in this paper could provide better 

approximations of reality. 

The remainder of this paper is organized as follows. Section 2 describes the 

motivation behind focusing on the crude oil and gold markets. Section 3 presents the 

methodologies of the GARCH-SGT models and the measurement of the VaR. Section 

4 compares the out-of-sample empirical results of the SGT, and the normal distribution 

and GED. Section 5 concludes the paper. 

 

IMPORTANCE OF CRUDE OIL AND GOLD 

Oil is one of the most important commodities, and almost everything tangible 

that we physically move burns oil in the process. One of the characteristics of the oil 

market prices is volatility, which is both high and variable over time. In general, oil 

prices have become more volatile since 1986 (Plourde and Watkins, 1998; Lynch, 2002; 

Regnier, 2007), and this volatility has a significant impact on the global economy (Lee 

et al., 1995; Ferderer, 1996; Sadorsky, 1999, 2006). US oil prices have been heavily 
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regulated through production or price control measures throughout much of the 

twentieth century. With the exception of the occasional jump in late 1990, crude oil 

prices have risen progressively since the later part of 2001. In January 2008, oil prices 

unprecedentedly surpassed $100 a barrel, the first of many price milestones to be 

passed in the course of the year. In July 2008, oil prices peaked at $147.30 a barrel. In 

the second half of 2008, the prices of most commodities fell dramatically in 

anticipation of diminished demand owing to the recent global recession. In fact, these 

high prices resulted in a dramatic drop in demand and prices fell below $35 a barrel at 

the end of 2008. It is believed that high prices will cause genuine economic damage, 

resulting in the threat of stagflation and a reversal of globalization. In July 2009, the 

president of the Organization of Petroleum Exporting Countries (OPEC), Jose Maria 

Botelho de Vasconcelos, remarked that a crude oil price of $68–$71 a barrel was 

optimal for a stable industry. The oil market was very fragile, and crude prices were 

susceptible to huge fluctuations caused by minor events. Factors such as high demand, 

low supply, strategies adopted by OPEC, environmental regulations, hedge fund 

actions, and violence in the Middle East have all stimulated prices. A traditional 

demand-based framework was unable to explain the marked deterioration in the 

commodity and oil prices (Chaudhuri, 2001). Jalali-Naini and Manesh (2006) also 

pointed out that high volatility is a very promising characteristic for testing volatility 

models. 

Of all the precious metals, gold is the most popular as an investment. Investors 

generally buy gold as a hedge or safeguard against any economic, political, social, or 

currency-based crises. History has shown that in adverse periods, investors tried to 

preserve their assets by investing in precious metals, most notably gold and silver. 

Since April 2001, the gold price has more than tripled in value against the US dollar, 

prompting speculation that this long secular bear market (or the Great Commodities 
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Depression) has ended and a bull market has reemerged. In March 2008, the gold price 

increased above $1,000. A number of studies have reported on the relationship between 

gold and macroeconomic variables (Sherman, 1983; Baker and Van-Tassel, 1985; 

Kaufmann and Winters, 1989; Sjaastad and Scacciavillani, 1996; Taylor, 1998; 

Christie-David et al., 2000; Cai et al., 2001; Tully and Lucey, 2006). These studies 

confirmed that macroeconomic variables such as the exchange rate of dollar, stock 

index, interest rate, consumer price index (CPI), and unemployment rate influence gold 

returns. In contrast, Lawrence (2003) argued that no significant correlations exist 

between gold returns and changes in certain macroeconomic variables. 

To address the ambiguous empirical results in measuring the VaR within oil and 

gold markets, this paper provides a comprehensive analysis using the flexible SGT 

distribution for modeling the volatilities. This paper extends the existing research in oil 

and gold markets in four important ways. First, we calculate the VaR on the basis of 

the SGT—a distribution that allows for a very diverse level of skewness and 

kurtosis—for modeling the distribution of commodity returns. The normal distribution 

and GED are the comparable models used to assess the robustness of the SGT 

distribution. Second, considering the behavior of highly volatile oil and gold assets, we 

employ the GARCH models for estimating the time-varying conditional variance of 

returns. Third, we analyze the time-varying scaling parameters of crude oil and gold 

assets. It will be easy to observe why traditional distributions are not appropriate for 

estimating volatilities and forecasting the VaR. Fourth, this paper investigates the 

volatility in the prices—both spot and futures—of oil and gold assets. This paper also 

analyzes the performance of out-of-sample forecasting for a long period, covering both 

stable and high-fluctuation periods, including the period of the current global financial 

crisis. The VaR in the SGT distribution is significantly superior to other distributions. 
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METHODOLOGY  

GARCH(1,1) Model with Skewed Generalized T Distribution (GARCH-SGT) 

This paper investigates GARCH(1,1) model in computing the conditional means 

and conditional variances for conditional VaR analysis. The GARCH(1,1) model 

proposed by Bollerslev (1986) is as follows:  

tttr ε+μ= , )h,0(~ ttε           (1) 

1t2
2

1t1t10t hβzhββh −−− ++=           (2) 

where 00 >β , 0β1 > , 0β 2 > and 1ββ 21 ≤+ . In the equations, tμ and th are the 

conditional mean and conditional standard variance of returns tr  based on the 

information set 1t−Ω up to time t-1. The standardized error term is ttt hz ε= . 

Considering the non-normal characteristics of energy assets, the conventional 

GARCH model with normal distribution is fail to capture the behavior of 

high-volatility of oil and golf assets. SGT distribution, advanced by Theodossiou 

(1998), is displaced for well-describing the distribution of assets returns exhibiting 

skewness and leptokurtosis. The probability density function for the SGT distribution 

can be represented as follows: 
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where λ is a skewness parameter, “sign” is the sign function, B(·) is the beta function, 

and δ is the Pearson’s skewness and mode of )z(f t . The scaling parameters n, κ and λ 

obey the following constraints: 2n > , 0κ >  and 11 <λ<− . The skew parameter λ 

controls the rate of descent of the density around the mode of z. In the case of positive 

skewness ( 0>λ ), the density function is skewed to the right. In contrary, the density 

function is skew to the left with the negative skewness ( 0<λ ). The parameter n and κ 

control the tail and height of the density. Smaller values of κ and n result in larger 

values for the kurtosis (i.e. more leptokurtosis p.d.f.s) and vice versa. The parameter 

κ  (>0) determines the (fat) tail and height or shape (degree of leptokurtosis) of the 

distributions (eq., normal for 2=κ  and Laplace for 1=κ ; thinner tail than normal 

for 2>κ  vs. thicker tail than normal for 2<κ ). The parameter n has the degree of 

freedom interpretation in the case 0λ =  and 2=κ . Moreover, larger positive values 

of λ result in larger positive values for both skewness and kurtosis (Theodossiou, 

1998).  

The SGT distribution nests several well-known distributions (see Table 1). 

Specifically, it gives for 0λ = , McDonald's and Newey's(1988) GT distribution; for 

2=κ , Hansen(1994)'s skewed student's t distribution; for 0λ =  and 2=κ , the 

student's t distribution; for 0λ =  and ∞=n , the Subbotin(1923)'s power exponential 

distribution; for 0λ = , 1κ =  and ∞=n , the Laplace distribution; for 0λ = , 2=κ  

and 1n = , the Cauchy distribution; for 0λ = , 2=κ , and ∞=n , the normal 

distribution; and for 0λ = , ∞=κ , and ∞=n , the uniform distribution. Furthermore, 

the conditional version of SGT for 2=κ  nests the conditional skewed t distribution 

of Jondeau and Rockkinger (2003). 

The log-likelihood function of the GARCH-SGT model can be written as: 

),,nz(flnLogL
T

1t
t

SGT
∑
=

λκ=           (4) 
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Measurement and Performance in VaR 

Definition and estimation 

A VaR model measures market risk for a portfolio of financial assets and 

measures the potential loss that a portfolio could lose over a given period of time. The 

manager may be interested in making a statement of the following form: “We are p 

percent certain that we will lose more than υ dollars in the next N days.” The variable 

υt is the VaR of the portfolio. Mathematically, the function can be expressed as: 

∫
υ

∞−

=
t

dr)r(fp t ,             (5) 

where )r(f t  represents the probability density function of return rt, the change in the 

value of a portfolio over a certain horizon N days. The one-day-ahead VaR based on 

the GARCH-SGT can be calculated as: 

)r(Eh),,n;z(fVaR tt
SGT

1t −⋅λκ= α+         (6) 

where ),,n;z(f t λκα  denotes the left quantile at α for SGT distribution1 with scaling 

parameters n, κ  and λ . The ht is the conditional variance of the GARCH model. 

 

Test of correct conditional coverage 

A “failure” is defined as an outcome ttr υ< . Intuitively, a “good” VaR 

estimators υt would be such that )ˆrPr( tt υ<  is close to p. The indicator variable is set 

as followed,  

⎩
⎨
⎧ υ<

=
otherwise,0

rif,1
I tt

t            (7) 

                                                 
1 The quantiles of the SGT distribution with various combinations of shape parameters are calculated 

with numerical integration or bootstrapping technique. 
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The stochastic process { }tI  is called the failure process. The VaR forecasts are said to 

be efficient of they display correct conditional coverage, that is, tp)I(E 1tt ∀=− . 

Kupeic (1995) develops a test for correct unconditional coverage in the likelihood ratio 

(LR) framework. The likelihood ratio statistics is as follows: 

2
(1)nn

nn

uc  ~  
ˆ-(1ˆ

p)-(1p-2logLR
01

01

χ⎥
⎦

⎤
⎢
⎣

⎡
ππ

=          (8) 

where p is the tolerance level where VaR measures are estimated, n1 (n0) is the number 

of 1 (0) in the indicator series, and )nn/(nˆ 011 +=π , the MLE of p. The null 

hypothesis of the failure probability p is tested against the alternative hypothesis that 

the failure probability is different from p.  

 

Evaluation using regulatory loss function 

The loss function evaluation method proposed based on assigning to VaR 

estimates a numerical score that reflects specific regulatory concerns. It provides a 

measure of relative performance that can be used to monitor the performance of VaR 

estimates. Two regulatory loss functions proposed by Lopez (1998) are described 

below. 

(1) Binary loss function 

If the predicted VaR is not able to cover the realized loss, this is termed a 

‘violation’. A binary loss function is merely the reflection of the LR test of 

unconditional coverage test and gives a penalty of one to each exception of the VaR. 

Namely, 

⎩
⎨
⎧ υ<

= ++
+ otherwise,0

rif,1
L 1t1t

1t           (9) 
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If a VaR model truly provides the level of coverage defined by its confidence level, 

then the average binary loss function over the full sample will equal p for the (1-p) th 

percentile VaR 

 

(2) Quadratic loss function  

The quadratic loss function of Lopez (1998) penalizes violations differently from 

the binary loss function, and pays attention to the magnitude of the violation. That is, 

⎩
⎨
⎧

υ≥
υ<υ−+

=
++

++++
+

1t1t

1t1t
2

1t1t
1t r if,0

r if  , )r(1
L         (10) 

The quadratic term ensures that large violations are penalized more than the small 

violations which provide a more powerful measure of model accuracy than the binary 

loss function. 

 

EMPIRICAL RESULTS 

Out-of-sample forecasting performance: Crude oil markets 

To assess the forecasting performance with alternative distributions, we first 

make estimates on the basis of daily returns for two years, after which the estimation 

period is continuously rolled forward by adding the most recent day and excluding the 

oldest. Following this process, the out-of-sample VaRs are calculated for the next 1,800 

days (from January 2002 to March 2009); the results are illustrated in Figure 2. The 

forecasting performance can be analyzed in terms of the integrity of the results for the 

long forecasting period, which includes both stable and high volatility periods, 

especially through the global financial crisis period from 2007. Tables 3 and 4 list the 

out-of-sample forecasting results for crude oil and gold in this paper; Panels A and B 

show the spot and futures prices, respectively. 
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We first discuss the results of the crude oil spot market. All the statistics are not 

significant in the correct unconditional coverage test (LRuc), thus indicating that the 

estimated failure probability is statistically consistent with the specified probability of 

the model. We then compare the unexpected loss (UL) and the average quadratic loss 

function (AQLF2). For the low confidence level (95% VaR), the normal distribution 

yields the highest VaR estimates and the lowest failure rates in the AQLF and UL. In 

comparison, the failure rates in the GED and SGT distribution are higher for the low 

confidence level of 95% VaR. Although these distributions provide a correct coverage 

rate, the SGT distribution and GED have lower accuracy than normal distribution. 

However, the results are completely different for the high confidence levels (99% and 

99.5%). The most correct VaR estimates are with the SGT distribution, whereas the 

accuracy and performance with the GED and normal distribution deteriorate and lose 

accuracy. A comparison of the AQLF values reveals that the lowest value is 0.0597 and 

0.0362 for 99% and 99.5%, respectively, with the SGT distribution; 0.0699 and 0.0445, 

respectively, with the GED; and 0.0785 and 0.0542, respectively, with the normal 

distribution. It is obvious that the SGT distribution provides the most accurate 

out-of-sample forecasts within the strict VaR confidence levels. With regard to the 

crude oil futures prices, the SGT distribution shows the best performance in any 

confidence level. Part B in Table 3 shows that although all the estimated failure rates 

are statistically consistent with the specified probability of the model, the AQLF and 

UL are the lowest with the SGT distribution. The best (or lowest) AQLF for 95%, 99%, 

and 99.5% VaR is 0.0185, 0.0283, and 0.0119, respectively, with the SGT distribution, 

and the inferior AQLF is with the GED; further, the worst (or highest) AQLF is 0.1878, 

                                                 
2 AQLF is the final standard when we select the best model, because large violations are penalized more 
than the small violations, and it provides a more powerful measure of model accuracy than other 
standards. 
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0.0482, and 0.0293, respectively, with the normal distribution. In sum, the skewness 

and leptokurtosis result in the improper VaR estimates with the normal distribution. 

Next, we illustrate the time-varying scaling parameters in Figure 3 for analyzing 

the superiority of the SGT distribution in the crude oil spot prices3. Two lines are 

drawn: the solid line indicates the values as on August 9, 2007, and the dotted line 

indicates the values as in September 2008. The former date indicates the beginning of 

the global financial crisis, which resulted in a liquidity crisis that prompted a 

substantial injection of capital into the financial markets by the United States Federal 

Reserve, Bank of England, and the European Central Bank. In the latter date, 

September 2008, the crisis deepened, as stock markets worldwide crashed and entered 

a period of high volatility, and a large number of banks, mortgage lenders, and 

insurance companies failed in the subsequent weeks. In the part in the figure indicating 

the GED, we can see that the fat-tail parameter (κ) is below 2 in the forecasting period, 

indicating that the fat-tail exists in the crude oil spot prices. However, the fluctuation of 

the parameter κ is not large, except in the global financial crisis period when it is 

comparatively low. In comparison, an observation of the scaling parameters of the SGT 

distribution in Part B of Figure 3 shows that the skewness parameter λ is smooth 

around 0, thus indicating that the skewness is not very important. However, two 

kurtosis parameters (κ and n) perform differently in the forecasting period. The first 

parameter, κ, is very smooth and the average value is close to that of the normal 

distribution (i.e., 2), indicating no peakness for the empirical distribution. The second 

parameter, n, on the other hand, is very volatile, especially in the beginning of the 

global financial crisis. By definition, the smaller values of κ and n result in larger 

values for the kurtosis, and vice versa, and the SGT distribution is close to the normal 

distribution while 0λ = , 2=κ , and ∞=n . We can therefore say that the normal 
                                                 
3 The results are shown in terms of crude oil futures prices. 
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distribution is appropriate only for the starting year of the global financial crisis and the 

fat-tail distribution is more appropriate for other periods. To eliminate the extremely 

high value for parameter n, we redraw the scaling parameters in Part C in Figure 3. It 

can be clearly seen that the fluctuation in parameter n and the estimated values of the 

parameter were not very large except in mid-2003 and early 2004, indicating 

significant fat tails for the empirical distribution of standardized returns. This is why 

the forecasting performance with the normal distribution was not better than that with 

the alternative distributions. 

 

Out-of-sample forecasting performance: Gold markets 

Next, we analyze the gold spot market, for all the confidence levels. The 

estimated failure rates with the SGT distribution are the only ones that pass the 

coverage rate test, LRuc. However, the estimated failure rates with either the normal 

distribution or GED are rejected in the LRuc tests. The phenomenon represents the 

failure rates in the normal distribution and GED, because the VaRs are statistically 

higher than the specific probability of the model. For example, in the normal 

distribution, the estimated failure rates are 0.0605, 0.0250, and 0.0183, which are 

statistically much higher than the specific probabilities of 0.05, 0.01, and 0.005. The 

same results appear in the GED, where the estimated failure rates are 0.0622, 0.0177, 

and 0.0083, which significantly exceed the specific probabilities of 0.05, 0.01, and 

0.005. Identical results are shown in the AQLF and UL: the values are the lowest with 

the SGT distribution irrespective of the confidence level (95%, 99%, and 99.5%). With 

regard to the futures market, though the estimated failure rates either with the normal 

distribution or GED are fine in 95% VaR, the failure rates are significantly biased in 

higher confidence levels (99% and 99.5% VaR). Let us take the normal distribution, for 

example. The estimated failure rates are 0.0216 and 0.0161 for 99% and 99.5% 
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confidence levels, respectively; these values significantly exceed the specific 

probabilities of 0.01 and 0.005, respectively. In comparison, the estimated failure rates 

with the SGT distribution pass the coverage rate test in all the confidence levels. 

Similar results can be found in the AQLF and UL, and the values with both the normal 

distribution and GED are relatively higher than those with the SGT distribution. 

We illustrate the time-varying scaling parameters in Figure 4. In the part 

indicating the GED in the figure, we see that the fat-tail parameter (κ) fluctuates around 

2 prior to August 2007; moreover, there is a clear decline in the parameter in the global 

financial crisis period. Specifically, in the GED, the fat-tail is more apparent in the 

financial crisis period, but not so much in the other periods. In comparison, the scaling 

parameters of the SGT distribution in Part B of Figure 4 show that the skewness 

parameter λ is smooth around 0, indicating that the skewness is not very significant. 

However, two kurtosis parameters (κ and n) perform differently in the forecasting 

period. The first parameter, κ, is quite stable in the whole period and the average value 

is around 2, whereas the second parameter, n, is relatively volatile as compared to 

parameter κ. Except for the beginning of 2003 and mid-2007, the value of parameter n 

is low, indicating that the kurtosis exists significantly. In comparison, the scaling 

parameters in the SGT distribution can appropriately capture the volatility of gold and 

they show that the unexpected losses are smaller in the SGT distribution. Figure 5 

shows the results of the forecasted VaR. Focusing on the latest period of the global 

financial crisis, we can easily observe that the forecasted VaR with the normal 

distribution and GED cannot capture the situation of high volatility, and the forecasted 

loss increases. However, the forecasted VaR with the SGT distribution is apparently 

different: the forecasted errors are relatively much smaller than the alternative 

distributions. 
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In sum, the forecasted VaR with the SGT distribution provides the most accurate 

out-of-sample forecasts either in the crude oil or gold markets. In the crude oil market, 

though all the distributions provide the correct coverage rate, the forecasted oil spot 

VaR with the normal distribution is only appropriate for the low confidence level, and 

the accuracy and performance distributions deteriorate and lose accuracy for the higher 

confidence levels. In comparison, the SGT distribution provides the most accurate 

out-of-sample forecasts within the strict VaR confidence levels. With regard to the gold 

market, the most appropriate distribution for the forecasted VaR is with the SGT 

distribution, and the failure rates in the normal distribution and GED for the VaR are 

statistically higher than the specific probability of the model. Therefore, the precise 

forecasting is the most important reason for adopting the SGT distribution. 

 

CONCLUSION 

This paper provides a comprehensive analysis using the flexible SGT 

distribution for modeling commodity volatilities and analyzing the time-varying 

scaling parameters, including those in the crude oil and gold markets. It also estimates 

the VaR within the framework of the GARCH-SGT model. The out-of-sample 

forecasting period covers a long period, including the most unsteady period of the 

global financial crisis. The empirical results show that the forecasted VaR with the SGT 

distribution provides the most accurate out-of-sample forecasts either in the crude oil 

or gold markets. In the crude oil market, though all the distributions provide the correct 

coverage rate, the forecasted oil spot VaR with the normal distribution is appropriate 

only for the low confidence level, and the accuracy and performance distributions 

deteriorate and lose accuracy for the higher confidence levels. In comparison, the SGT 

distribution provides the most accurate out-of-sample forecasts within the strict VaR 

confidence levels. Further, the time-varying parameters in the SGT distribution show 
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that two kurtosis parameters (κ and n) perform differently in the forecasting period. 

The peakness parameter is close to that of the normal distribution (i.e., 2), indicating no 

peakness for the empirical distribution. However, the fat-tail characteristic significantly 

exists for the empirical distribution of returns. Focusing on the period of the current 

global financial crisis, we see that the estimation results of the scaling parameters in the 

GED and SGT distribution are totally different: the SGT distribution allows a very 

diverse level of skewness and kurtosis, and can capture the volatility more effectively. 

This is why the forecasting performance with the normal distribution and GED is not 

better than with the SGT distribution. 

With regard to the gold markets, the most appropriate distribution for the 

forecasted VaR is the SGT distribution, and the failure rates in the normal distribution 

and GED for the VaR are statistically higher than the specific probability of the model. 

Moreover, the time-varying scaling parameters are similar to crude oil returns. The 

skewness parameter is close to 0, indicating that the skewness is not very significant; 

the peakness parameter is close to that of the normal distribution, indicating no 

peakness for the empirical distribution; and finally, the fat-tail parameter is small, 

indicating that the kurtosis significantly exists. Comparatively, the scaling parameters 

in the SGT distribution can capture the volatilities of gold effectively and they show 

that the unexpected losses are smaller in the SGT distribution. We focused on the latest 

period of the global financial crisis and found that the forecasted VaR with the normal 

distribution and GED are biased, whereas the SGT distribution can model the high 

volatility well. Finally, the estimated VaR within the SGT model is significantly 

superior to the other distributions in the crude oil and gold markets. 



 

18 

REFERENCE 

Ait-Sahalia, Y. and A. Lo, 1998, Nonparametric estimation of state-price densities 

implicit in financial asset prices, Journal of Finance, 53(2), 499-547. 

Baker, S. A., and R. C. Van-Tassel, 1985, Forecasting the price of gold: A fundamental 

approach, Journal of Atlantic Economics, 13, 43-52. 

Bali, T. G. and P. Theodossiou, 2007, A conditional-SGT-VaR approach with 

alternative GARCH models, Annals of Operations Research, 151(1), 241-267. 

Bali, T. G., H. Mo, and Y. Tang, 2008, The role of autoregressive conditional skewness 

and kurtosis in the estimation of conditional VaR, Journal of Banking and Finance, 

32, 269-282. 

Bollerslev, T., 1986, Generalized autoregressive conditional heteroskedasticity, 

Journal of Economics, 31, 307-327. 

Bollerslev, T., 1987, A conditional heteroscedastic time series model for security prices 

and rates of return data, Review of Economics and Statistics, 69(3), 542-547. 

Bollerslev, T., R. F. Engle, and D. B. Nelson, 1994, ARCH models, In: Robert, Engle, 

McFadden, D. L. (Eds.), Handbook of Econometrics, Elseview, Amsterdam. 

Busch, T., 2005, Value-at-risk of resource scarcity – The example of oil, Investment 

Management and Financial Innovation, #1, 39-56. 

Cabedo, J. D. and I. Moya, 2003, Estimating oil price ‘value-at-risk’ using the 

historical simulation approach, Energy Economics, 25(3), 239-253. 

Cai, J., Y. L. Cheung, and M. C. S. Wong, 2001, What moves the gold market? Journal 

of Futures Markets, 21, 257-278. 

Casassus, J. and P. Collin-Dufresne, 2005, Stochastic convenience yield implied from 

commodity futures and interest rates, Journal of Finance, 60(5), 2283-2331. 

Chan, N. H., Deng, S. -J., Peng, L. & Xia, Z. (2007). Interval estimation of 

value-at-risk based on GARCH models with heavy-tailed innovations. Journal of 



 

19 

Econometrics, 137(2), 556-576. 

Chaudhuri, K., (2001) Long-run prices of primary commodities and oil prices, Applied 

Economics, 33, 531-538. 

Christie-David, R., M. Chaudhry, and T. Koch, 2000, Do macroeconomic news 

releases affect gold and silver prices, Journal of Economic Business, 52(5), 

405-421. 

Engle, R. F. and G. Gonzales-Rivera., 1991, Semiparametric ARCH models, Journal of 

Business and Economics Statistics, 9(4), 345-359. 

Engle, R. F., 1982, Autoregressive conditional heteroskedasticity with estimates of 

variance of United Kingdom inflation, Econometrics, 50(4), 987-1007. 

Fan, Y., Y. J. Zhang, H. T. Tsai, and Y. M. Wei, 2008, Estimating ‘Value-at-Risk’ of 

crude oil price and its spillover effect using the GED-GARCH approach, Energy 

Economics, 30, 3156-3171. 

Ferderer, J., 1996, Oil price volatility and macroeconomy. Journal of Macroeconomy, 

18(1), 1-26. 

Giot, P. and S. Laurent, 2003, Market risk in commodity markets: A VaR approach. 

Energy Economics, 25(5), 435-457. 

Harris, R. D. F., and C. C. Kucukozmen, 2001, The empirical distribution of UK and 

US stock returns, Journal of Business, Finance and Accounting, 28, 715-740. 

Harris, R. D. F., C. C. Kucukozmen, and F. Yilmaz, 2004, Skewness in the conditional 

distribution of daily equity returns, Applied Financial Economics, 14, 195-202. 

Hung, J. C., M. C. Lee, and H. C. Liu, 2008, Estimation of value-at-risk for energy 

commodities via fat-tailed GARCH models, Energy Economics, 30, 1173-1191.  

Jalali-Naini, A. R. and M. K. Manesh, 2006, Price volatility, hedging and variable risk 

premium in the crude oil market, OPEC Review, 30(2), 55-70. 

Jondeau, E. and M. Rockinger, 2003, Conditional volatility, skewness, and kurtosis: 



 

20 

existence, persistence, and comovements. Journal of Economic Dynamics and 

Control, 27(10), 1699-1737. 

Kaufmann, T. and R. Winters, 1989, The price of gold: A simple model, Resource 

Policy, 15(4), 309-318.  

Kupiec, P. H., 1995, Techniques for verifying the accuracy of risk measurement 

models, Journal of Derivatives, 3, 73-84.  

Lawrence, C., 2003, Why is gold different from other assets? An Empirical 

Investigation, World Gold Council, London. 

Lee, K., S. Ni and R. A. Ratti, 1995, Oil shocks and the macroeconomy: the role of 

price volatility. Energy Journal, 16(4), 39-56. 

Lopez, J. A., 1998, Methods for evaluating value-at-risk estimates, FRBNY Economic 

Policy Review, Oct, 119-124. 

Lynch, M., 2002, Causes of oil volatility, Working paper presented at the 8th 

International Energy forum, Osaka. 

McDonald, J. and W. Newey, 1988, Partially adaptive estimation of regression models 

via the generalized T distribution, Econometric Theory, 4, 428-457. 

Plourde, A. and G. Watkins, 1998, Crude oil prices between 1985 and 1994: How 

volatile in relation to other commodities? Resource and Energy Economics, 20(3), 

245-262. 

Regnier, E., 2007, Oil and energy price volatility, Energy Economics, 29(3), 405-427. 

Sadeghu, M. and S. Shavvalpour, 2006, Energy risk management and value at risk 

modeling, Energy Policy, 34(18), 3367-3373. 

Sadorsky, P., 1999, Oil price shocks and stock market activity, Energy Economics, 

21(5), 449-469. 

Sadorsky, P., 2006, Modeling and forecasting petroleum futures volatility, Energy 

Economics, 28(4), 467-488. 



 

21 

Sherman, E. J., A Gold pricing model, Journal of Portfolio Management, 9, 68-70, 

1983.  

Sjaastad, L. A., and F. Scacciavillani, 1996, The price of gold and the exchange rate, 

Journal of International Money Finance, 15(6), 879-897. 

Solt, M. E. and P. J. Swanson, 1981, On the efficiency of the markets for gold and 

silver, Journal of Business, 54(3), 453-478. 

Taylor, N. J., 1998, Precious metals and inflation, Applied Financial Economics, 8(2), 

201-210. 

Theodossiou, P. and L. Trigeorgis, 2003, Option pricing when log-returns are skewed 

and leptokurtic, Working paper, School of Business, Rutgers University. 

Theodossiou, P., 1998, Financial data and the skewed generalized t distribution, 

Management Science, 44(12), 1650-1661. 

Tully, E. and B. M. Lucey, 2006, A power GARCH examination of the gold market, 

Research in International Business and Finance, 21(2), 316-325. 

 

 



 

22 

 

Table 1. The Special Cases of SGT distributions 
 λ κ n Notes: 
Skew generalized t (SGT) Free Free Free λ > 0  skew to the right 
Skew t (ST) Free 2 Free λ < 0  skew to the left 
Skew GED (SGED) Free Free ∞  
Skew Normal Free 2 ∞ κ > 2  thinner tail than normal 
Skew Laplace Free 1 ∞ κ < 2  thicker tail than normal 
General t (GT) 0 Free Free  
Student t 0 2 Free  
GED 0 Free ∞  
Normal 0 2 ∞  
Laplace 0 1 ∞  
Uniform 0 ∞ ∞  
 
Table 2. Descriptive Statistics 

 Mean S.D.  Skewness Excess Kurtosis J-B test 
Part A. Crude oil      

Spot price 49.9529 26.3458 1.2846** 1.2981** 795.8244** 
return 0.011 2.661 -0.2766** 4.2950** 1801.1006**

      
Futures price 49.9703 26.3638 1.2793** 1.2867** 787.7146** 

return 0.0276 2.6552 -0.2082** 4.0639** 1602.8249**
      
Part B. Gold       

Spot price 484.8145 208.9687 0.8346** -0.5371** 295.0343** 
return 0.0518 1.8027 -0.2259** 23.0336** 50930.0510**

      
Futures price 486.2587 209.9169 0.8247** -0.5695** 292.1880** 

return 0.0511 1.2118 0.0956* 5.0259** 2427.3922**
 Notes: J-B test is Jarque-Bera normality test. **and * represent significance under 1% and 10% level. 
 
Table 3. Out-of-sample performance of alternative distributions for crude oil  
Part A. Spot       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -3.9992 1.7264 0.0464 0.0511 0.2385 -0.0633
 99% VaR -5.7055 2.4509 2.4527 0.0138 0.0785 -0.0185
 99.5% VaR -6.3302 2.7162 1.5697 0.0072 0.0542 -0.0126
        

GED 95% VaR -3.9632 1.6979 0.0000 0.0500 0.2626 -0.0667
 99% VaR -6.0390 2.5028 0.2166 0.0111 0.0699 -0.0172
 99.5% VaR -6.8477 2.8146 1.5697 0.0072 0.0445 -0.0110
        

SGT 95% VaR -3.9120 1.6634 0.8054 0.0546 0.2616 -0.0681
 99% VaR -6.1914 2.4670 0.0485 0.0094 0.0597 -0.0139
 99.5% VaR -7.2397 2.8140 0.1169 0.0055 0.0362 -0.0077

        
Part B. Futures       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -3.9342 1.6231 0.1041 0.0516 0.1878 -0.0572
 99% VaR -5.6043 2.3048 0.8384 0.0122 0.0482 -0.0130
 99.5% VaR -6.2157 2.5544 0.4169 0.0061 0.0293 -0.0082
        

GED 95% VaR -3.9322 1.6056 0.4124 0.0533 0.1885 -0.0567
 99% VaR -5.8702 2.3483 0.5354 0.0083 0.0368 -0.0101
 99.5% VaR -6.6131 2.6327 0.4838 0.0038 0.0199 -0.0061
        

SGT 95% VaR -3.9221 1.5924 0.0130 0.0494 0.1855 -0.0565
 99% VaR -6.0281 2.3227 2.1626 0.0067 0.0283 -0.0092
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 99.5% VaR -6.9432 2.6341 0.0957 0.0044 0.0119 -0.0041
Notes: * represents significance under 1% level. LRuc is the Log-likelihood test for correct 
unconditional coverage. ABLF is the average binary loss function. AQLF is the average quadratic loss 
function. UL denotes the unexpected loss, which refers to the average dollar loss caused by the failures 
of VaR model. 
 
Table 4. Out-of-sample performance of alternative distributions for gold  
Part A. Spot       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -2.5769 1.4962 3.9672* 0.0605 0.3658 -0.0733
 99% VaR -3.6759 2.1151 28.8773** 0.0250 0.1984 -0.0322
 99.5% VaR -4.0783 2.3416 38.0757** 0.0183 0.1651 -0.0244
        

GED 95% VaR -2.4878 1.3122 5.2706** 0.0622 0.3950 -0.0792
 99% VaR -4.2121 2.1530 8.9335** 0.0177 0.1604 -0.0231
 99.5% VaR -4.9446 2.5072 3.3448** 0.0083 0.1187 -0.0146
        

SGT 95% VaR -2.4837 1.1153 2.4477 0.0587 0.4427 -0.0804
 99% VaR -4.5451 1.9566 0.9358 0.0125 0.1669 -0.0211
 99.5% VaR -5.6366 2.4104 0.5503 0.0037 0.1078 -0.0130

        
Part B. Futures       
  Mean S.D. LRuc ABLF AQLF UL 

Normal 95% VaR -1.8894 0.6966 2.1878 0.0577 0.1329 -0.0459
 99% VaR -2.6959 0.9880 18.5572** 0.0216 0.0500 -0.0182
 99.5% VaR -2.9911 1.0947 28.0883** 0.0161 0.0355 -0.0133
        

GED 95% VaR -1.8807 0.7054 2.1878 0.0577 0.1333 -0.0461
 99% VaR -2.9817 1.1008 5.7296* 0.0161 0.0368 -0.0137
 99.5% VaR -3.4252 1.2600 8.4500** 0.0105 0.0223 -0.0085
        

SGT 95% VaR -1.9780 0.8220 0.1156 0.0518 0.1256 -0.0438
 99% VaR -3.3187 1.4320 1.8863 0.0135 0.0311 -0.0115
 99.5% VaR -3.9548 1.7703 2.5151 0.0080 0.0171 -0.0061

Notes: ** and * represent significance under 1% and 5% level. LRuc is the Log-likelihood test for 
correct unconditional coverage. ABLF is the average binary loss function. AQLF is the average 
quadratic loss function. UL denotes the unexpected loss, which refers to the average dollar loss caused 
by the failures of VaR model. 
 
 
Table 5. Descriptive statistics of time-varying scaling parameters 

 Mean S.D. Min. Max. 
Part A. Crude oil     

Spot:   GED ~ kurtosis: κ  1.315 0.198 0.916 1.779 
SGT ~ kurtosis: κ  2.347 0.335 1.566 4.371 

n 9.993 14.033 3.732 183.453 
skew:   λ  -0.049 0.044 -0.151 0.101 

     
Futures: GED ~ kurtosis: κ  1.221 0.179 0.913 1.585 

SGT ~ kurtosis: κ  2.204 0.388 1.444 3.742 
n 87.476 121.474 3.770 363.980 

skew:   λ  -0.054 0.055 -0.160 0.132 
     
Part B. Gold     

Spot:   GED ~ kurtosis: κ  1.898 0.147 1.567 2.289 
SGT ~ kurtosis: κ  1.934 0.527 1.062 5.294 

n 4.994 3.405 2.048 70.813 
skew:   λ  -0.094 0.081 -0.285 0.080 

     
Futures: GED ~ kurtosis: κ  1.531 0.239 1.168 2.244 
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SGT ~ kurtosis: κ  2.001 0.574 1.065 5.479 
n 31.372 68.244 2.001 290.703 

skew:   λ  -0.127 0.126 -2.183 0.165 
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Figure 1. The time series plot of crude oil and gold 
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Part A. GED distributions 
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Part B. Normal distributions 
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Part C. SGT distribution 
Figure 2. Forecasted VaR with different distributions in crude oil spot 
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Part A. Kurtosis parameter in the GED distribution 
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Part B. Skewness and kurtosis parameters in the SGT distribution 
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Part C. Skewness and kurtosis parameters in the SGT distribution exclude the period of global financial 
crisis 
Figure 3. The time-varying scaling parameters  
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Part A. GED distribution 
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Part B. Normal distribution 
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Part C. SGT distribution 
Figure 4. Forecasted VaR with different distributions in gold spot 
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Part A. Kurtosis parameters in GED distribution 
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Part B. Skewness and kurtosis parameters in the SGT distribution 
Figure 5. The time-varying scaling parameters  


