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ESTIMATION AND TESTING OF
PORTFOLIO VALUE-AT-RISK
BASED ON L-COMOMENT
IMATRICES

WEI-HAN LIU*

This study employs L-comoments introduced by Serfling and Xiao (2007) into
portfolio Value-at-Risk estimation through two models: the Cornish—Fisher
expansion (Draper, N. R. & Tierney, D. E., 1973) and modified VaR (Zangari, P.,
1996). Backtesting outcomes indicate that modified VaR outperforms and
L-comoments give better estimates of portfolio skewness and excess kurtosis than
do classical central moments in modeling heavy-tailed distributions.© 2009 Wiley
Periodicals, Inc. Jrl Fut Mark 30:897-908, 2010

INTRODUCTION

Value-at-Risk has emerged as one of the standard risk measures. As an exten-
sion from the univariate case, portfolio Value-at-Risk (PVaR) helps determine
the downside risk level of the whole portfolio and ideally allows for the meas-
urement of the contribution of each risk factor within. Though challenging,
one of the directions for PVaR estimation is solely based on the Cornish—Fisher
expansion (Cornish & Fisher, 1937), which relies solely on an adjustment fac-
tor to estimate percentiles for non-normal distributions. The Cornish—Fisher
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expansion is known for its decomposable and analytical expression, because of
a normality assumption on the return distribution. However, the adjustment
factor is reliable only if the distribution is close enough to being normal (Dowd,
2005). This reliability issue calls for refinements, including the major ones
such as: (1) Draper and Tierney (1973) utilize more terms in the expansion to
enhance estimation accuracy and (2) Zangari (1996) corrects the skewness and
excess kurtosis of the Gaussian quantile function, producing the modified VaR
(mVaR). Accordingly, the performance of those two refinements are contingent
upon an estimation of the moments. However, current practices mostly rely on
the traditional moment estimation.

Moment estimation has played a crucial role in financial analysis, e.g.
portfolio optimization and capital asset pricing model (Elton, Gruber, Brown, &
Goetzmann, 2002), yet it is criticized for its heavy reliance on assumptions
about second order or higher moment in the multivariate portfolio analysis.
The assumptions for moment estimation are hardly supported by financial
return series. For example, the traditional central moments are confined to suf-
ficiently light-tailed distributions, while financial return series exhibit heavy-
tailed properties. Hosking (1990) proposes L-moments as a better alternative
for higher moment estimators, as he claims that L-moments, based solely on a
finite first moment assumption, are analogous to central moments and give
a coherent estimation with traditional central moments. L-Moments also give a
better description of heavy-tailed distributions that financial return series usu-
ally demonstrate. Their application can be exercised not only parametrically,
but also in a semiparametric and nonparametric modeling setting. Serfling and
Xiao (2007) extend the model to a multivariate scenario and define multivariate
L-moments or L-comoments, i.e. Gini-covariance, L-coskewness, and L-cokurtosis
for orders of 2, 3, and 4, respectively. While analogous to traditional central
moments, L-comoments are effective new descriptive tools and outperform in a
nonparametric moment-based description of a possibly heavy-tailed distribu-
tion. So far, L-comoments have not been applied to PVaR estimation and the
estimation performance has not yet been evaluated via backtesting.

This study employs six foreign exchange rate series to compose three port-
folios with bivariate series. I implement two kinds of PVaR estimation and the
estimates are tested through three kinds of backtesting. The outcomes indicate
that the Cornish—Fisher expansion is not suitable for heavy-tailed distributions.
Furthermore, mVaRs outperform in PVaR estimation and L-comoments
improve the estimation for moments.

The organization of the paper is as follows. Following section discusses the
PVaR models, central moments, L-comoments, and backtesting. Penultimate
section describes the data sources and discusses the estimation and testing
results. The last section concludes.
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PVAR, CENTRAL MOMENT, L-COMOMENTS, AND
BACKTESTING

PvaR

For a portfolio with # assets, PVAR at confidence level « is specified as follows:
VaR(a) = —F Y(a). (1)

Here, the return series and their respective weights are denoted as r =
(r,...,r.) andw = (w,, . .., ®, while F~! (-) is the quantile function associated
to the cumulative density function F(+) of the portfolio return distribution (rp).

Under a location-scale representation, the portfolio return can be

expressed as:
r, =o'+ Vmu (2)

where p and m, represent the portfolio mean and the second central moment.
Here, u denotes a random variable with distribution function G(-) of zero mean
and unit variance.

Gaussian VaR (GVaR), the PVaR under multivariate normality assump-
tion, can be expressed as:

GVaR(a) = —o'pn — Vin,® (@) (3)

where ®~'(a) denotes the quantile function of the standard normal distribu-
tion at «a significance level.
Zangari (1996) corrects the skewness and excess kurtosis of GVaR and

proposes the modified VaR (mVaR) defined as follows:

w = (a)]7 AR wn)’
GVaR(a) + Vm —l(z2 —1)s, — i(Z3 - 3z)k, + i(213 —5z.)s2| (4)
2 6 a 14 24 a a’™p 36 a a/Pp

where s and k_ are the portfolio skewness and excess kurtosis, respectively, and
z, equals @ '(a). In effect, the mVaR calculation relies on the first four
moments. Favre and Galeano (2002) conclude that the skewness and the kur-
tosis effect are high if the VaR is computed at 99%. In essence, the moment
estimation plays an important role in approximating the downside risk at
extremal significance levels.

To extend GVaR to a non-normal return distribution, the Cornish—Fisher
expression can be applied to the quantile function in GVaR, and the correspon-

ding PVaR is denoted as CFVaR and defined as:

Journal of Futures Markets  DOI: 10.1002/fut



900 Liu

CFVaR = —o'p — Vm,G ' (a)

. 1 1
Cla) =z, + [z = Ds, + (20 = 320k, — 5 (220 = 5245, (5)

It is proved by several literatures that the Cornish—Fisher approximations
hardly improve performance even when we increase the order of approximation
(see, for example, Hardle, Kleinow, & Ulfig, 2002; Jasche, 2002). Accordingly,
this study only extends the mVaR and CFVaR expressions to the second order.

Central Moments

Both Equations (4) and (5) highlight that the portfolio moments are key com-
ponents in PVaR estimation. Traditionally, the gth orders of portfolio central
moments are defined as m, = E[(rp — '), and we have:

my, = ' Zw
my = o' M;®(0® )
= o'M,®(0Qo@w)

hy

where ) stands for the Kronecker product. Moreover, M; and M,, the third and
fourth orders of portfolio moments, are the co-skewness matrix and co-kurtosis
matrix and are defined as:

M; = E[(r = p)(r —p) & (r — p)]
M,=E[r=—p)(r—pn) & F—pn)r—mu)l
The portfolio skewness (sp) and excess kurtosis (kp) are given by:
s, = my/ (m2)3/2 (6)

P
k m,/(m,)* — 3 (7)

14

(Boudyt, Peterson, & Croux, 2008)

L-Comoments

Serfling and Xiao (2007) extend the univariate L-moments of Hosking (1990)
to a multivariate framework and introduce multivariate L-moment matrices to
characterize descriptive features, which are typically dispersion, skewness, and
kurtosis. They claim this innovative methodology offers interpretations similar
to classical central moments, but only requires a first-order moment assump-
tion. Their empirical analysis indicates that L-comoments provide more stable
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and efficient estimates than the classical central version. Consequently,
L-comoments outperform in modeling heavy-tailed data in both parametric and
nonparametric settings, and their outperformance increases with increasing
order of moments and with increasing heavy tailedness.

For the mn-ordered observations from a univariate distribution

X, =%, ="' =x,, the nth L-moment is defined as:

n:n

n—1

n=n S (e ®

L-moments possess attractive properties in comparison to classical central
moment analogues, including better asymptotic approximation to sampling dis-
tribution.

The L-moments sequence (A,) can also be expressed as the expected value
of an order statistics, i.e.:

1
n= [P @ ©)
0
n i n n+j
where P(v) = Ej:()p:fijj with p;,. = (—1)"’<].>< j ) By the orthogonality

of orthogonal polynomials p,;;, A, captures the information about F. Expressed
as a covariance,

A, = Covlx, PF_,(F(x))]. (10)

n—1

Recall that the gth order central comoment matrices are defined as:
Cov[x' — p;, (¢ — p;)*']. (11)
Thus, the qth order L-comoment can be defined as:

Agij) = Cov|x', Py (Fi(¥))], q =2 (12)

]

if Equations (10) and (11) are combined together. In essence, L-comoments
are based on a comprehensive pairwise approach for descriptive measures with
dimensions higher than 2. L-Comoments can provide estimates of dispersion,
correlation, skewness, kurtosis, etc. in a multivariate setting.

Backtesting

Backtesting helps avoid model misspecification and differentiate the model
performance under special conditions from a faulty model. In effect, backtesting

Journal of Futures Markets  DOI: 10.1002/fut
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TABLE |
Construction of Conditional Exceptions

Conditional

Day Before
Current Day No Exception Exception Unconditional
No exception Too = To(1 ~ o) To=T,(1 = m) T( - m)
Exception Tor = To(mo) T = Ty(m,) Tim)
Total To T T=T,+T,

Note. T, denotes the number of days in which state j occurred in one day while it was state i the previous day. m; represents the
probability of observing exceedances conditional on state i the previous day.

can balance Type I against Type II statistical errors in PVAR estimation. There
are two major criteria for backtesting: unconditional rate of exceedances (UC)
and independence of the exceedances (IND). It is expected that the signifi-
cance level represents the maximum probability of observations exceeding VaR
estimates if the model is correctly calibrated.

Under the null hypothesis that the significance level is the true probability
of exceedances occurring, the test statistics are a log-likelihood ratio specified as:

LRyc = —2In[(1 = p)" N p™ + 2In{[1 — N/TI" M(N/T)"} ~ x*(1)  (13)

where T is total days and N is the number of exceedances. This asymptotically
follows a x* distribution with one degree of freedom (Kupiec, 1995).

For the independence test of the exceedances, the first job is to set up a
series, which indicates if the daily VaR estimate is exceeded or not. If the VaR
estimate is not exceeded by the actual loss, the exceedance indicator is set at 0,
or 1 otherwise. The next job is to observe the switches of exceedances. Table 1
shows how to construct a table of conditional exceptions. The log-likelihood
test statistics are specified as:

LRIND = —211—1[(1 — ﬂ-)(T(H)+TI(J>7T(T()]+TI])

+ 2In[(1 — 7)ol (1 — 7)) TomTn] ~ x2(1) (14)

where T;; denotes the number of days in which state j occurred in one day while
it was state i the previous day. Moreover, 7, represents the probability of
observing an exceedance conditional on state i the previous day. It asymptoti-
cally follows a x* distribution with one degree of freedom. The first term is
specified under the hypothesis that the exceedances are independent across the
sample, or T, = T, = T,, = (T, + T,,)/T. The second term is the maximized
likelihood for the observed data. This test helps confirm if the exceedances are

Journal of Futures Markets ~ DOI: 10.1002/fut
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serially correlated, i.e. to examine whether the model makes systematic errors
in the VaR estimates.

The conditional coverage (CC) test is designed to simultaneously test if
the VaR violations are independent and the average number of exceedances is
correct. The test statistics for conditional coverage are actually the sum of the
test statistics of unconditional coverage and independence, i.e. LR = LRy +
LR\p (Christoffersen, 1998).

EMPIRICAL ANALYSIS

The foreign exchange rate series is known for its volatility process and this
vibrant property makes it a challenging candidate for PVaR estimation. Six
series are selected to compose three portfolios with equal weights. All the
six foreign exchange series against the US dollar are retrieved from the Central
Bank of the Republic of China (Taiwan) (http://www.cbe.gov.tw) for this study:
Canadian Dollar, Australian Dollar, Korean Won, UK Pound, Indonesia Rupiah,
and Thai Baht, and they are labeled as CAD, AUD, KRW, BGP, IDR, GBP,
IDR, and THB, respectively. The data cover the period between January 5, 1993
and March 13, 2009. Natural log-returns on a daily basis are calculated and the
time series plot is exhibited in Figure 1. Table II presents the summary statis-
tics. Significant leptokurtic or fat-tailed phenomenon exists, because of exces-
sive kurtosis. Jarque-Bera test statistics overwhelming confirm the departure of
normality of the six series. The QQ plots in Figure 2 show a significant depar-
ture from normality for the six return series.

The six return series are grouped, in order of increasing non-normality,
into three bivariate portfolios: Portfolio I: CAD + AUD; Portfolio II: IDR + THB;

TABLE 1l
Summary Statistics

CAD AUD IDR THB KRW GBP
Min —374E —02 —6.80E —02 —3.32E—-01 —6.32E—02 —203E—-01 —4.69E —02
Mean 6.61E—07 6.93E—06 4.39E—04 850E—05  1.57E — 04 2.70E — 05
Median 0.00E + 00 —7.70E—05  0.00E +00 0.00E +00  0.00E + 00 0.00E + 00
Max 331E-02 7.61E—02 3.03E—-01 740E—02  1.35E — 01 3.96E — 02
Total N 403E+03 4.03E+03 4.03E+03 4.03E+03  4.03E + 03 4.03E + 03
Std Dev. 475E-03 7.76E—03 1.75E—-02 5.83E—-03  9.56E — 03 5.81E — 03
Skewness 7.06E—02  6.15E—01 574E—-01 6.05E—01 —1.16E + 00 2.85E — 01
Kurtosis 5.99E +00  1.06E+01 9.96E +01 372E+01  1.08E + 02 5.17E + 00
Jarque-Bera  6010.64 (0.00) 19210.48 (0.00) 1661269 (0) 231205.3 (0.0) 1943319 (0.00) 4518.802 (0.000)

normality
test statistics

Null Hypothesis: data are normally distributed. P-value in parenthesis.k,
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Plot 1: Time Series Plots
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FIGURE 1

Time series plots.

and Portfolio I1I: KRW + GBP. Table III shows there is significant disparity
in the estimates of portfolio skewness and excess kurtosis by the classical cen-
tral moments and L-comoments. Figure 3 summarizes the PVaR estimates vs.
their respective portfolio returns. The left and right panels show the respec-
tive contrasts at 5 and 1% significance levels. In general, CFVaR give more
modest downside risk estimates than mVaR. This disparity becomes more sig-
nificant as the tail areas move toward more extremal significance levels.
Backtesting outcomes have significant implications in moment estimation

Journal of Futures Markets ~ DOI: 10.1002/fut
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Plot 2: QQ Normal with Line Plots
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FIGURE 2
QQ normal with line plots.

and PVaR expressions by contrasting the estimates by the aforementioned
methods (Table IV). In general, CFVaR underperforms mVaR in the PVaR
estimation.

In the univariate setting, Cornish—Fisher expansion is a quick analytical
approximation, but its performance significantly deteriorates with a departure
from normality. Consequentially, CFVaR fails to give adequate performance in
tail modeling, especially at higher dimensions. This disadvantage does not
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TABLE Il
Estimates of Portfolio Skewness and Excess Kurtosis

Classical
Method Central Moments L-Comoments
Portfolio I: CAD + AUD Sp 0.39341181 0.26537
kp 4.881089818 26.0841
Portfolio Ill: IDR + THB Sp 0.574206378 0.58633
kp 80.48015391 47.9926
Portfolio Il: KRW + GBP Sy —0.65107669 0.64693
kp 56.47661884 48.5317

Note. Sy portfolio skewness, kp: portfolio excess kurtosis

TABLE IV
Outcomes of Backtesting of PVAR Estimates

Model Significance mVaR(M) mVaR(L) CFVaR(M) CFVaR(L)
S5

Level 1% 5% 1% 5% 1% 5% 1% 5%

Portfolio I: CAD + AUD ucC X X X X X X X
|ND o [e] o o [e] o [e] o
CcC X X o o X X X o

Portfolio II: IDR + THB uc X X X X o X X X
IND X X o o X X X X
CcC X X o X X X X X

Portfolio lll: KRW + GBP uc X X X X X X X X
IND X X o o X X X X
CcC X X o X X X X X

X and ° represent rejection and nonrejection of the null hypothesis, respectively. The significance level for each null hypothesis is set
at 10%. UC, unconditional coverage test; IND, independence test of the exceedances; CC, conditional coverage test.

change much with the traditional central moments or with the innovative
L-comoments.

In the results, mVaRs do not pass the test of rate of exceedances, and nei-
ther do CFVaR, due to the number of major crises in the data period. However,
mVaRs do not make any systematic mistake and pass the independence test and
conditional coverage test. On the other hand, L-comoments exhibit significant
improvement in the mVaR estimation. The mVaRs estimated by L-comoments,
denoted as mVaR(L), outperform those done through traditional central
moments, denoted as mVaR(M), at significance levels of both 5 and 1%.
Noticeably, mVaR(L) gives sufficiently satisfactory performance in estimating
the portfolio’s downside risk in this study.

Journal of Futures Markets ~ DOI: 10.1002/fut
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Portfolio I: CAD+AUD
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FIGURE 3

Portfolio returns vs. their PVaR estimates. Portfolio I: CAD + AUD; Portfolio II: IDR + THB; Portfolio
III: KRW + GBP. The left and right panels show the respective contrasts at 5 and 1% significance levels.

CONCLUSION

The estimation of PVaR has been a challenging task, especially for non-normal
returns. Previous research focuses on the derivatives of the location-scale
representation, and the Cornish—Fisher expansion and mVaR are the current
favorites. It is based on the assumptions that an adjustment in the higher
moments or correction of portfolio skewness and excess kurtosis can help
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improve the estimation. This study highlights the estimation issues of the key
components: the central moments. In addition to the classical central
moments, this study employs the L-comoments introduced by Serfling and
Xiao (2007), and their respective performance on the Cornish—Fisher expan-
sion and mVaR are examined via backtesting.

The outcomes herein indicate that the Cornish—Fisher expansion is not
suitable for the downside risk estimation of multivariate non-normal returns.
Furthermore, mVaRs give better performances at the 5 and 1% significance
levels. L-comoments enhance the outperformance, and backtesting shows
favorable outcomes. This study not only helps identify mVaR as an acceptable
candidate for PVaR estimation but also alerts that the classical central
moments may not be suitable for estimating portfolio skewness and excess kur-
tosis in heavy-tailed distribution.
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