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Abstract

This project solved the bi-criterion single machine scheduling problem of n jobs with
a past-sequence-dependent setup times (PSD) and learning effect (LE) together. Although
PSD and LE are gradually considered by researchers, there is none who deals with both
effects in the bi-criteria problems. The reason is that multi-objective problem is harder
than single objective problem because we need to obtain a set of Pareto solutions. As a
result, this project is the first one who solves this problem. The two objectives considered
are the total completion time (TC) and total absolute differences in completion times
(TADC). The objective is to find a sequence that performs well with respect to both the



objectives, the total completion time and the total absolute differences in completion
times.

To deal with this new problem, we proposed a method to solve it effectively. We first
analyzed the parameters according to the weights on each position of the two objectives.
Then, we matched the weights with the processing time of the jobs. So that two optimal
sequences were obtained by this matching approach. In addition, we started to search a
new Pareto solution located between the two new solutions. The process was repeatedly to
search a pair of solutions until no new solutions were found. Our approach was very
efficient to find out thte minimum set of optimal sequences (MSOS). In order to evaluate
the proposed method, we compared it with the state-of-art multi-objective algorithm,
MOEA/D, on numerous instances. The empirical results shown the proposed algorithm
was effectively to find out a set of approximate solutions in a very short CPU time when it
was compared with MOEA/D. This proposed algorithm was promising to solve the
biceriteria scheduling problem in this research.

Keywords:  Single  machine  scheduling,  Bi-criterion  optimization  problem,
Past-sequence-dependent setup times, Learning effect, Multi-Objective Evolutionary
Algorithms
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In most single machine scheduling problems, the pro-
cessing time of a job is assumed to be a constant.
However, a well-know concept in management sci-
ence literature is learning effect (L E) first discovered
in [18, 6]. Later on, past-sequence-dependent (PSD)
effect was studied [9, 8, 11]. No matter the P.SD and
LFE, the processing time of a job is not a constant and
depends on its position in the sequence. Both effects,
nonetheless, yiled different results on the processing
time.

LF is due to an operator who is familiar with an op-
eration so that the processing time is reduced by the
number of jobs he/she has processed [3, 18]. On the
other hand, PSD increases the processing time be-
cause the setup time is depended on the number of
jobs has been processed [8]. Since both effects are the
trade-off in the processing time if we consider them
into together, it shows an interesting point that how do
we arrange a sequence that minimizes the considered
objective(s).

In single machine scheduling, various objectives are
considered, such as mean flow time, mean tardiness,
maximum flow time, maximum tardiness, number of
tardy jobs, weighted mean of earliness, and tardiness.
Moreover, these objectives may present trade-off be-
tween or among the objectives to each other. In other
words, no single solution can optimize all the objec-
tives at the same time. Pareto optimal solutions, which
characterizes the best trade-offs among the objectives,
are of practical interest to a decision maker.

To the best of our knowledge, this research is the
first research which consider the bi-objective single
machine scheduling problem with the consideration of
LE and PSD effect. We consider the objective of
minimizing the total completion time (7'C') and total
absolute difference in completion times (T"TADC). In
addition, a good approach was used in this research.

When we solve the bi-criteria scheduling problem,
the set of all the optimal Pareto solutions in the ob-
jective space is called the Pareto front (PF'). Be-
cause bi-criteria problems and multi-objective prob-
lem are hard to solve, many researchers like to employ
heuristics or Multi-objective evolutionary algorithms
(MOEA5) to find a set of approximation solutions to
the PF'. In this research, we employed the Aneja-
Nair [1] which demonstrated an efficient method to
acquire a set of Pareto solutions. This method is able

to find minimum set of optimal sequences (M SOS)
efficiently. When we want to have complete set of
optimal sequences (C'SOS), we should utilize some
MOEAs to do the global search. Moreover, we also
evaluated the performance of the Aneja-Nair method
in the extensive experiments. Finally, even though
PSD and LE have received many attentions in recent
years [6, 2, 14, 10, 17, 9, 5, 11], there was none who
solve the bi-criteria problems. It is of importance of
this research in the academic study.

3 AABREELTHAS

3.1 Methods

This research employs the Aneja-Nair’s algorithm
and MOEAs to solve the bi-criterion Single machine
scheduling problem in the first year. Aneja-Nair’s
method is able to obtain the minimum set of opti-
mal sequences (M SOS) effectively due to this method
search a good solution between a pair of Pareto solu-
tions. When we want to have complete set of optimal
sequences (C'SOS), we utilize the MOEAs because
it has a better capability of doing the global search.
In the second year, we study the Aneja-Nair method
works with MOEAs. After Aneja-Nair method gener-
ates M SOS efficiently, these Pareto solutions can be
used as the initial solutions for MOEAs. The solution
quality could be improved.

A past-sequence-dependent setup times (PSD) and
learning effect (L F) are considered in this research.
The property of PSD is to increase the processing
time while the number of jobs are processed. On the
other hand, due to the comprehensive of the jobs, the
learning effect decreases the processing time. Because
both problems are the fundamental of this research be-
fore we consider the PS'D and LF into together, the
problem definition of PSD and LE are shown in the
Section 3.2.1 and Section 3.2.2.

After that, we introduce the PSD integrates with
LFE which hasn’t been solved no matter in bi-criteria
single objective problem. This research is thus the
first research which solves this problem. The combi-
nation of the PSD and LFE is shown in Section 3.3.
As soon as we introduce the problem, the methodol-
ogy of Aneja-Nair method and MOEAs are discussed.
In Section 3.5, we show the approach of the Aneja-
Nair’s algorithm. Later on, a MOEAs, specifically
the MOEA/D, which will be used. Finally, the de-



tail of MOEA/D and the combination with Aneja-Nair
method are explained in Section 3.7.

3.2 Problem Definitions of PSD and LFE

3.2.1 Problem Definition
Dependent Setup Times

of Past-Sequence-

A batch of n independent jobs to be processed on a
continuously available single machine. The machine
can process only one job at a time and job splitting
and inserting idle times are not permitted. All the jobs
are available at time zero. Each job has a processing
time p;, (j = 1,2, ...,n). Let sj; and py;) be the setup
time and processing time of a job occupying position
J in the sequence respectively, and sj; 18 defined as

7—1
S[j :’sz[i] 17=2,3,...n S =0, (1)
i=1

where v > 0 is a normalizing constant. In the
above Eq. (1), the actual length of the setup time
depends on the value of . Koulamas and Kypari-
sis [8] considered the following scheduling problems
with past-sequence-dependent setup times given by
equation (1). Problem. (i): 1/sps4/Cias; Prob-
lem. (ii):1/spsq/7'C; Problem. (iii):1/s,sq/TADC
Problem.(iv):1/s,s¢/BC. It is shown in [8] that
the well-known shortest processing time (SPT) se-
quence is optimal for both the problems Problem. (i)
(1/5psda/Cinaz) and Problem. (ii) (1/spsq/TC).

3.2.2 Problem Definition of Learning Effect

When we include the learning effect as given in [4],
the processing time of a job depends on its position in
the sequence and is given as

b1 = pjla (2)

In the above equation, p; is the normal processing
time of job j, and pj; is the processing time of job j if
it is in position [ of the sequence, and « is the learning
index and o < 0. From the above equation (2), we
see that pj; > pjo > pj3... > pjn. For example, if
P = 3 and a = —0.515, then Pj1r = 3, Pj2 = 2.0994,
pjs = 1.7037, pjs = 1.4691, p;5 = 1.3095, and so on.

3.3 Past-Sequence-Dependent Setup
Times Together with Learning Effect

After the basic problem definitions of PSD and LE
are introduced, this study explains the core of the re-
search which takes the PSD and LF into considerate.
The scheduling problem is defined in the following
manner. A set of n independent jobs to be processed
on a continuously available single machine. The ma-
chine can process only one job at a time and job split-
ting and inserting idle times are not permitted. All the
jobs are available at time zero. Each job has a normal
processing time p,., (r = 1,2, ...,n). The processing
time of a job occupying position r in the sequence is
given by

=1,2

5 g e
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where @ < 0 is a constant learning index. Let sp,
be the setup time of a job occupying position 7 in the
sequence, and s, is defined as

8[1] = 0

r—1
S0 bx Y pfiy r=23,..n 4
7j=1

where b > 0 is a normalizing constant. In the above
Eq. (4), the actual length of the setup time depends
on the value of b and learning index a. Let C, de-
note the completion time of job r in a sequence. It
is shown in [3] that the well-known shortest process-
ing time (SPT) sequence is optimal for both the prob-
lems Problem. (i) (1/LE, Spsa/Crmaz) and problem.
(i) (1/LE, spsq/TC).

34 PSD and LE for the Objectives 7C
and TADC

Section 3.3 already defines the processing time when
we consider the PSD and LE into together. Since
the bi-objectives studied by this project are the total
completion time (7'C') and total absolute difference
in completion times (T'ADC)), the following sections
show the formulation of the two objectives. T'C' is ex-
plained and then the second objective T"’ADC' is shown
later.



3.4.1 First Objective: 1/LE, s,,4/TC"

In this section, we consider the single-machine
scheduling problem with the objective of minimiz-
ing the total completion time (7'C). The T'C' of the
1/LE, s,s4/TC scheduling problem is defined as:

3

TC = (n =7+ 1)(sp] +pﬁ})

1

—

M= ;

I
-

T

)=

{on=re e 2 ey

r=1

As mentioned in Koulamas and Kyparisis [8],
Eq.(5) can be viewed as scalar product of two vec-
tors. One vector is pj, the vector of processing time
of jobs. The other vector is v, known as positional
weights vector given as

v=Mnm—-r+1) 14+ —-—+=

In the above Eq.(6), the value of v; = 0 because
spy is zero. It is well-known from Hardy [7] that Eq.
(5) is minimized by arranging the elements of pj, in
in increasing order and the elements of other vector
v, In non-increasing order. This is known as shortest
processing time (SPT) sequence. Hence, for a given
vector of py,, using SPT, the optimal sequence for the
1/spsa/TC problem can be obtained in O(n log n)
time. It can be seen that the optimal sequence depends
on the value of SPT.

3.4.2 Second Objective: 1/LE. s,:,/TADC:

When we calculate the single-machine scheduling
problem with the objective of minimizing the total ab-
solute difference in completion times (TADC), it is de-
noted as the 1/LE, s,.4/T ADC scheduling problem
given in [3].

b(n—r)(n—r+1) } -

Y > IC - il

i=1 j=i

TADC =

n

= D (r=Dn—r+1)(sp +py)

r=1

= > Ar-Dm-r+D)
b Z (7 =D =7+ 1)} py

(7)

The above Eq. (7) can be viewed as the scalar prod-
us§§ of two vectors. One vector is py, the vector of
processing time of jobs. The other vector is v, known
as positional weights vector given as

{r—=1)n—r+1) +

n

b * Z (J—Dn—7+1)}r

v, =

j=r+1
r=23,...n (8)
In the above positional weights vector Eq. (8),

6) the value of v; = 0 because syij is zero (.° s =

bzg;i P[;‘] and v; is an initial weight, see also [3]).
It is well-known from [7] that Eq. (7) is minimized
by arranging the vectors v, and pj,j in opposite orders.
This is also given in [9] as Lemma.l. Hence, for a
given value of b and a learning index a, the optimal
sequence for the 1/s,.,/T ADC problem can be ob-
tained in O(n log n) time. It can be seen that the opti-
mal sequence depends on the values of both b and a.

3.5 Proposed Algorithm

Due to we studied a bi-criteria scheduling problem
in this research, we need to find a set of solutions
that minimized both T°'C' and TADC'. Now, we will
show how the bi-criterion problem in single machine
scheduling with PSD and L F, can be solved to obtain
the minimum set of optimal schedules (M SOS) using
the concept of Aneja-Nair approach. This approach re-
cursively searches for a new Pareto solution between a
pair of existing solutions.

To accomplish this task, the one to one correspon-
dence of variables between his bi-criterion problem



and bi-criterion single machine scheduling problem
with a learning effect should be calculated. The one
to one correspondence between the two problems are
given in Table .1 of Appendix .1 Once this is known,
the concept of Aneja-Nair method could be used to
generate the M SOS. The proposed algorithm was
shown as follows:

Notation:
o Weight;: Initial weight vector for 7'C’

e Weights: Initial weight vector for TADC

[ X1: A
Weight,

solution obtained by matching the

[ XQZ A
Weights

solution obtained by matching the

e /,: The objective values of the solution X;
e /5: The objective values of the solution X,
e (): A set of Pareto solutions

e O: A set of new solutions

e X;: A new solution found by the weight match
algorithm

Algorithm:

Weight, < Calculate the Weights of T'C’
Weighty < Calculate the Weights of TADC'
X7 < MatchAlgorithm(W eight;)
X5 < MatchAlgorithm(W eights)
Q<+ {Xl, XQ}
CombinedW eight < UpdateWeight(ZX1, ZX2)
0 < MatchAlgorithm(CombinedW eight)
while 6 is not empty do
Selected a Solution (X) and a Solution (Y)
from €2 and 9, respectively
10:  CombinedW eight < UpdateWeight(ZX, Z¥)
11: X, < MatchAlgorithm(W eight)
12:  isNew < RedundantSolution(X;)
13:  if isNew is true then
14: d«—{Xi}
15:  end if
16:  AddY to Qif Y is compared with all solutions
in 2, and remove Y in §
17: end while
18: Output (2

R A Al > e

Line 1 and Line 2 calculated the weight vector based
of the two objectives. Once they are obtained, we
used the weight matching algorithm to obtain two se-
quences according to the weight vector in Line 3 and
Line 4. The two solutions are collected into the set
Q). It represents the Pareto set founded by the pro-
posed algorithm. In addition, the objective values of
the two solutions are computed in Line 6. Later on,
we could find out the intermediate solution between
X, and X, and then have a new solution in Line 7.
During Line 8 to Line 17, it is an iterative procedure
to find out whether there is any intermediate solution
between each pair of solutions in {2 and 6. Once a
solution in ¢ is compared with all the solutions in (2,
this solution is moved to €2 instead of staying in d. As
a result, when there is no solutions in § which could
be searched with (2, the iterative process is terminated
and the Pareto set € is output in Line 18. We present a
numerical example for illustration.

Numerical Example: We now use the same 4 job
problem given in Bagchi [3], with a learning effect
(o = —0.152). We show how to apply Aneja-Nair
method and obtain the minimum set of optimal sched-
ules. The normal processing time of these jobs are
p1 =1, pos = 2, p3 = 3, and py = 4. The parameter b
is set as 0.25.

Following Aneja [1], we first obtain point 1 in the
objective space. This is obtained by minimizing 2;
the first objective; i.e., the total completion time (7'C").
The positional weights and the optimal sequence ob-
tained are shown in Table.1. The optimal sequence
obtained is {1 2 3 4}. The value of z; for this se-
quence is 21.2019. The value of z, the second objec-
tive; i.e., the total absolute differences in completion
times (TADC), is 32.8285. Hence, z\" = 21.2019,

and z{") = 32.8285.

Table 1: Matching algorithm for minimization of 7'C":
a=—0.152,b=0.25

Position-r 1 2 3 4
wh 5.5000 3.3750 1.9040 0.8100
Sequence® 1 2 3 4

We now obtain point 2 in the objective space. This
is obtained by minimizing z, the second objective;
i.e., the total absolute differences in completion times
(TADC'). The positional weights and the optimal se-
quence obtained are shown in Table.2. The optimal



sequence obtained is {4 2 1 3}. The values of z;
and z, for this sequence ({3 2 1 4}) are 28.3940 and

29.7896 respectively. Hence, z§2) = 28.3940, and
2 = 29.7896.

Table 2: Matching algorithm for minimization of
TADC: oo = —0.152

Position-r 1 2 3 4
w> 2.5000 4.2750 4.0195 2.4300
Sequence* 3 2 1 4

As mentioned in [1], we now use the points 1 and 2,
and obtain the Values of oz(1 D = |z (1)| 3.0389,
and ai"? = |2 (D = 7.1921. The new single
machine scheduhng problem is formulated as to find
the sequence of jobs (o) that minimizes

n—r—l— 1)7“ p[r}

Za(12

n

Z aém)(r —1L(n—7r+1)rpy 9)

r=1

The positional weights are wo® = agl’z) x(n—r+

)r®pp) + aém) (r—=1)(n—7r+1)r*py. The positional
weights (w;) for the above combined problem are:
w® = 34.6942, w3 = 41.0026, ws®* = 34.6946, and
wy® = 19.9384. The positional weights and the opti-
mal sequence obtained are shown in Table.3. The opti-
mal sequence obtained with these weights is {312 4}.
The values of z; and z» for this sequence ({3 1 2 4})
are 26.9230 and 29.5340 respectively. We call this as
point 3 in the objective space and zf’) = 26.9230, and
¥ = 29.5340.

Table 3: Matching algorithm for minimization of Eq.
(9): = —0.152,b = 0.25

Position-r 1 2 3 4
wh 34.6942 41.0026 34.6946 19.9384
Sequence* 3 1 2 4

We now use the points 1 and 3, and obtain the values
of a§1’3) = |Zég) - zél)| = 3.2945, and aél’s) = |z§3)
z§1)| = 5.7211. The new single machine scheduling

problem is formulated as to find the sequence of jobs
(o) that minimizes

n

S a9 s

r=1

Z SV (r —1)(n — r 4 1)r%pp(10)

flo) = (n =7+ 1)r%pp +

— (¥

The positional weights are wo® x(n—r+
L)r®ppy + al" (r—1)(n—r+ 1)7®py). The positional
weights (w;*) for the above combined problem are:
wy® = 32.4225, wy™ = 35.5767, wy® = 29.2685, and
wy® = 16.5709. The positional weights and the opti-
mal sequence obtained are shown in Table.4. The opti-
mal sequence obtained with these weights is {2 1 3 4}.
The values of z; and 2, for this sequence ({2 1 3 4})
are 23.3269 and 31.0535 respectively. We call this as
point 4 in the objective space and 254) = 23.3269, and

Y — 31.0535.

Table 4: Matching algorithm for minimization of Eq.
(10) : @« = —0.152,b = 0.25

Position-r 1 2 3 4
wh 32.4225 35.5767 29.2685 16.5709
Sequence* 2 1 3 4

We now use the points 2 and 3, and obtain the values
of a'®¥ = 1209 — 29| = 0.2556, and a{** = |21 —
z§2)| = 1.4710. The new single machine scheduling
problem is formulated as to find the sequence of jobs
(o) that minimizes

n

Z a§2’3) *

r=1
n

flo) = (n—r+1)rpy +

a§2’3) (r=1)(n —r+ 1)r“pp(11)
r=1

_ o®¥

The positional weights are w;* x(n—r+
D)r®pp) + a§2’3) (r—=1)(n—7r+1)r*p). The positional
weights (w;*) for the above combined problem are:
w® = 5.0833, wy® = 7.1512, wy® = 6.3993, and
wy® = 3.7816. The positional weights and the optimal
sequence obtained are shown in Table.5. The optimal

sequence is obtained with these weights is {3 1 2 4}.



The values of z; and z for this sequence ({3 1 2 4})
are 26.9230 and 29.5340 respectively. We call this as
point 5 in the objective space and zf’) = 26.9230, and
2 = 29.5340.

Table 5: Matching algorithm for minimization of Eq.
(11): a= —0.152,b = 0.25

Position-r 1 2 3 4
wh 5.0833 7.1512 6.3993 3.7816
Sequence* 3 1 2 4

When we use the points 1 and 4, we obtain the same
optimal sequence {1 2 3 4}. When, we use the points 3
and 4, we obtain the same optimal sequence obtained
is {3124}. When we use the points 3 and 5, we obtain
the same optimal sequence {3 12 4}. When we use the
points 2 and 5, we obtain the same optimal sequence
{3 21 4}. There are no other optimal sequences and
so the algorithm terminates.

Based on the above, the minimum set of optimal
sequences to this problem is: {1 2 3 4}, {3 21 4},
{3124}, and {2134}

It is shown in Bagchi [3] that the cardinality of
the set M SOS is n, when the learning effect is not
considered; i.e., « = 0. Then in the author’s pre-
vious research, it indicates that the cardinality of the
set M SOS is more than n when the learning effect is
included; i.e., « # 0. When it comes to the PSD
and LE are considered together, the MSOS is n.
Thus, there are some interesting characteristic should
be studied.

To summarize the Aneja-Nair method to solve this
single machine scheduling problem, the first step is to
obtain the optimal solutions (Pareto) or good sequence
of each objective. After that, we will search the weight
combination of two Pareto solutions and then to sort
the new weights resulted in a new sequence. Then we
iteratively search the new sequence between the pair-
wise solutions. By using Aneja-Nair method, we can
find the M SOS efficiently since each operation needs
nlogn to do the sorting. So it is quite efficient to ob-
tain a set of Pareto solutions. When we have to obtain
CSOS, we need to apply MOEAS to do global search.
In addition, we can compare the MOEAs with Aneja-
Nair method so that we can evaluate the Aneja-Nair
method. The next section presents the approaches of
MOEA:s.

3.6 MOEA/D

In this project, we propose an implementation of
MOEA/D for the bi-criteria single machine schedul-
ing problems. We discuss the choice of decomposi-
tion methods in MOEA/D first, which is the setting
of reference point and the way of updating neighbor-
ing solutions in Section 3.6.1. Later on, Section 3.6.2
presents the general framework of MOEA/D in Sec-
tion 3.6.3 and the revised version for this scheduling
problem is shown in Section 3.6.3.

3.6.1 Decomposition of Multi-Objective Opti-
mization

The multi-objective optimization problem (MOP) can
be stated as follows:

Minimize F(z) = (fi(x), ..., fm(x))"

Subject to z € (2 (12)

There are several approaches for converting the
problem of approximation of the PF into a number of
scalar optimization problems and they can be found
in the literature (e.g., [12]). The most popular ones
among them include the weighted sum approach and
Tchebycheff approach which are introduced in the fol-
lowing:

Weighted Sum Approach [12]

This approach considers a convex combination of
the different objectives. Let A = (Ay, Ao, ..., Ap)T
be a weight vector, i.e., \; > Oforallz = 1,...,m
and >" ' A\; = 1. Then, the optimal solution to the
following scalar optimization problem:

Minimize ¢“*(z|\) = > " A f;

Subject to z € 2 (13)

is a Pareto optimal point to 13, where we use
g“*(z|\) to emphasize that A is a coefficient vector
in this objective function, while x is the variables to
be optimized. To generate a set of different Pareto
optimal vectors, one can use different weight vectors
x in the above scalar optimization problem. If PF is
convex, this approach would work well. However,
not every Pareto optimal vector can be obtained by
this approach in the case of non-convex PFs [12]. To
overcome these shortcomings, Tchebysheff approach
is suggested.



Tchebycheff Approach [12]

In this approach, the scalar optimization problem is
in the form

Minimize g'*(a[, 2%) = max (\lfi(e) = )

Subject to x € 2 (14)

, 25 ) is the reference point, i.e.,
z* = min (fi(z)|x € Q) foreachi = 1,...,m. For
1<i<m

where z* = (z7,..., 2}

each z* Pareto optimal point there exists a weight vec-
tor A such that x* is the optimal solution of Eq. 14
and each optimal solution of Eq. 14 is a Pareto opti-
mal solution of Eq. 12. Therefore, one is able to ob-
tain different Pareto optimal solutions by altering the
weight vector. One weakness with this approach is that
its aggregation function is not smooth for a continuous
MOP. However, since this work aims to solve schedul-
ing problems which is a type of discrete problem, it
still can be used in the EA framework in this work.

3.6.2 Introduction of MOEA/D

Multi-objective evolutionary algorithm based on de-
composition (MOEA/D) needs to decompose the
MOP under consideration. Any decomposition ap-
proaches can serve this purpose. In the following de-
scription, we suppose that the Tchebycheff approach
is employed. It is very trivial to modify the follow-
ing MOEA/D when other decomposition methods are
used.

Let A1, \%,...,\" be a set of even spread weight
vectors and z* be the reference point. As shown in
Section I, the problem of approximation of the PF’ of
12 can be decomposed into scalar optimization sub-
problems by using the Tchebycheff approach and the
objective function of the subproblem is

Minimize (x|, %) = max {X/|fi(z) - =} (I5)

1<i<m

where M = (A, A2 ... A")T. MOEA/D minimizes
all these objective functions simultaneously in a single
run.

Note that g% is continuous of g**(z|\, z*), the opti-
mal solution of g*(z|\’, z*) should be close to that of
if \* and )/ are close to each other. Therefore, any in-
formation about these ¢'®’s with weight vectors close

to should be helpful for optimizing g*¢(x|\’, 2*). This
is a major motivation behind MOEA/D.

In MOEA/D, a neighborhood of weight vector \ is
defined as a set of its several closest weight vectors in
{INUNE A

The neighborhood of the ith subproblem consists
of all the subproblems with the weight vectors from
the neighborhood of \. The population is composed
of the best solution found so far for each subprob-
lem. Only the current solutions to its neighboring sub-
problems are exploited for optimizing a subproblem in
MOEA/D.

At each generation, MOEA/D with the Tchebycheff
approach maintains:

1. A population of n points z,..., 2" € Q, where
2! is the current solution of the ith subproblem.

2. FV ... FV", where FV' is the F-value of 2,
ie, FViforeachi =1,...,n;

3.2 = (21,...,2,)7, where z; is the best value
found so far for objective f;;

4. An external population (EP), which is used to
store nondominated solutions found during the
search.

Consequently, the general framework of MOEA/D
can be stated as follows:

Input:

MOP: Eq. 12;

a stopping criterion;

n: the number of the subproblems considered in
MOEA/D;

A uniform spread of weight vectors: A\, \2, ... \";
T: the number of the weight vectors in the neighbor-
hood of each weight vector.

Output: EP.

Step 1) Initialization:

Step 1.1) Set EP = ¢.

Step 1.2) Compute the Euclidean distances between
any two weight vectors and then work out the T

closest weight vectors to each weight vector. For
each i = 1,...,n;set B(i) = {\,...,A\r}, where
A N are the closest weight vectors to \’.

Step 1.3) Generate an initial population z',... 2"

randomly or by a problem-specific method. Set F'V".
Step 1.4) Evaluate 2 = (z1,...,2,)" by a problem-
specific method.



Step 2) Update:

Fori=1,...,n,do

Step 2.1) Reproduction: Randomly select two in-
dexes k, [ from B(i), and then generate a new solution
y from z* and 2! by using genetic operators.

Step 2.2) Improvement: Apply a problem-specific
repair/improvement heuristic on y to produce 7 .

Step 2.3) Update of z: For each 7 = 1,... m, if
zj < f;(y'), then set z; = f;(y)

Step 2.4) Update of Neighboring Solutions: For
each index j € B(i), if ¢"(y'|M,2) < g'(27| N, 2),
then set 7; =y and FV7 = f;(i/).

Step 2.5) Update of EP:

Remove from EP all the vectors dominated by F(y).
Add F(y') to EP if no vectors in EP dominate F(y).
Step 3) Stopping Criteria: If stopping criteria is
satisfied, then stop and output EP. Otherwise, go to
Step 2.

In initialization, B(i) contains the indexes of the T
closest vectors of \*. We use the Euclidean distance
to measure the closeness between any two weight vec-
tors. Therefore, \*’s closest vector is itself, and then
i € B(1). If j € B(i), the subproblem can be regarded
as a neighbor of the ith subproblem.

In the ith pass of the loop in Step 2, the T neigh-
boring subproblems of the ith subproblem are consid-
ered. Since z* and 7! in Step 2.1 are the current best
solutions to neighbors of the ith subproblem, their off-
spring y should hopefully be a good solution to the ith
subproblem. In Step 2.2, a problem-specific heuris-
tic is used to repair/improve y in the case when ¥ in-
validates any constraints, and/or optimize the ith g'.
Therefore, the resultant solution y' is feasible and very
likely to have a lower function value for the neighbors
of ith subproblem. Step 2.4 considers all the neighbors
of the ith subproblem, it replaces =7 with v’ if 3/ per-
forms better than 27 with regard to the jth subproblem.
FV7 is needed in computing the value of ¢*(z7|\, 2)
in Step 2.4.

Since it is often very time-consuming to find the ex-
act reference point z*, we use z, which is initialized
in Step 1.4 by a problem-specific method and updated
in Step 2.3, as a substitute z* for ¢*® in Step 2.4. The
external population EP, initialized in Step 1.1, is up-
dated by the new generated solution 4" in Step 2.5. In
the case when the goal in 12 is to minimize F'(x), the
inequality in Step 2.3 should be reversed.

3.6.3 MOEA/D Modifications for Single Machine
Scheduling problems

To further improve the performance of MOEA/D,
some procedures of MOEA/D are modified. First of
all, it is arguable that which decomposition method
can be used in the MOEA/D. Miettinen [12] argued
that the weighted-sum approach is good at convex
problem while Tchebysheff approach is useful when
the problem is non-convex. As a result, although our
previous work showed that Tchebysheff approach out-
performed the weighted sum approach, it is still not
sufficient enough to conclude that Tchebysheff ap-
proach will perform better for the flowshop bench-
marks.

Secondly, the 2 index is applied as a substitute of z*.
Hence, the value of z is apparently larger than or equal
to that of z* in the minimization problem and z doesn’t
guarantee a good lower reference value when the de-
composition method normalizes the objective values.
To provide a good approximation of thez, a parameter
« is introduced and each z; is multiplied by « if z; is
improved. The setting of « is configured by Design-
of-Experiment.

Finally, once a good solution is found in the
MOEA/D, the algorithm will replace its neighbor-
hood solutions immediately. When the solution is
very good, this new solution inevitably replaces all
neighborhood solutions. This procedure enhances the
convergence of the algorithm; however, it causes the
problem of degrading the diversity of the population
abruptly. Therefore, the genetic operators are not able
to generate different offsprings since all the solutions
are identical in the T neighbors. Therefore, this paper
sets the maximum number of replaced neighborhood
solution is 1 rather than be able to replace all neigh-
bors.

There are many crossover and mutation methods.
We utilize the two-point crossover and moving posi-
tion mutation for the Crossover procedure and the Mu-
tation procedure, respectively, because [15] found both
of them were the better approaches for these two ob-
jectives. It is noted that there is no improvement or re-
pair procedure applied in this multiobjective schedul-
ing study.

Finally, we present the extensive results of
MOEA/D and the proposed method to solve the single
machine scheduling with LE and PSD. It is intro-
duced in the next section.



3.7 Experimental Results

This project conducted extensive computational ex-
periments on single machine scheduling problems to
validate the performance of the proposed method on
learning effect and past-sequence-dependent effect. To
test the algorithms, there are numerous data sets pub-
lished in the literature [16] for the single machine
scheduling problems, including 20, 30, 40, 50, 60,
and 90 jobs. We employed their instances of sks225a,
sks325a, sks425a, sks525a, sks625a, and sks925a. In
addition, we set the « as -0.152 and b is as 0.25 in
our experiments. The stopping criterion of MOEA/D
is the number of total examined evaluations. The fol-
lowing table (See Table 6) shows the parameter used
by the MOEA/D, which were determined by Design-
of-Experiment [13].

Table 6: Parameter settings of MOEA/D

Factor Level
Population Size 200
Crossover Operator ~ Two-Point Central Crossover
Mutation Operator Swap Mutation

Crossover Rate 0.9
Mutation Rate 0.5
Examined Solution n % 200

The replication of each algorithm on the each in-
stance is 10 times on a computer with Intel i5 650 CPU
(3.2 GHZ). In addition, we aggregated the Pareto so-
lutions obtained by MOEA/D and the proposed algo-
rithm and then them into the reference set. The domi-
nated solutions are removed from the aggregated list.

In Fig. 1, we firstly examine the solution quality for
the MOEA/D and the proposed algorithm on small in-
stances, including job 20, 30, and 40. We could find
out MOEA/D could converge to reference. However,
our proposed algorithm which utilized Aneja-Nair’s
approach may provide a better spread to the reference.
Moreover, the convergence of these solutions fitted to
the reference set. So our proposed method could out-
perform MOEA/D in the small-size instances.

When it comes to the larger-size instances, we
demonstrated the results on sks525, sks625, and
sks925 in Fig. 2. It clearly demonstrated that our
proposed algorithm also provided a diversified Pareto
solutions than MOEA/D. The number of solutions ob-
tained by our proposed algorithms were more than the
ones obtained by MOEA/D. Finally, the proposed al-
gorithm also closed to the reference set. As a result,
the proposed algorithm outperformed the MOEA/D in
the single machine scheduling problems with learning

Reference |

MOEAD

+  Reference
MOEAD |
Aneg-Nair :

5 I L | 1 L i

Figure 1: Reference set, MOEA/D and Aneja-Nair
Method on sks225, sks325, and sks425

effect and PSD.

3.8 Conclusions

This project studied the single machine schedul-
ing problems with learning effect (L£) and past-
sequence-dependent (PSD) effect. Both effects has
received increasing attentions. We considered two ob-
jectives involved in this problem, including the 7'C’
and TADC'. Because the researcher did the param-
eter analysis of the learning effect (LF) and past-
sequence-dependent (PSD), we proposed an algo-
rithm which employed this technique. In addition,
the proposed algorithm also utilized Aneja-Nair ap-
proach to find a new Pareto solution between two ex-
isting solutions. Our proposed algorithm could search
for the Pareto solutions in an effective way instead of
doing blind search. When our algorithm was com-
pared with the state-of-art MO algorithm, MOEA/D,
our proposed algorithm shown the convergence and
the spread outperformed that of MOEA/D. Thus, the
proposed algorithm was promising when we solved
the single machine scheduling with LF and PSD.
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with Sequence-Dependent Setup Times
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Abstract—Artificial chromosomes with genetic algorithm
(ACGA) is one of the latest Estimation of Distribution Algorithms
(EDAs). This algorithm has been used to solve different kinds
of scheduling problems successfully. However, due to its proba-
bilistic model does not consider the variable interactions, ACGA
may not perform well in some scheduling problems, particularly
the sequence-dependent setup times are considered because a
former job influences the processing time of next job. It is
not sufficient that probabilistic model just captures the ordinal
information from parental distribution. As a result, this paper
proposes a bi-variate probabilistic model added into the ACGA.
The new algorithm is named extended artificial chromosomes
with genetic algorithm (eACGA) and it is used to solve single
machine scheduling problem with sequence-dependent setup
times in a common due-date environment. Some heuristics are
also employed with eACGA. The results indicate that the average
error ratio of eACGA is one-half of the ACGA. In addition,
when eACGA works with other heuristics, the hybrid algorithm
achieves the best solution quality when it is compared with
other algorithms in literature. Thus, the proposed algorithms
are effective for solving this scheduling problem with setup
consideration.

Keywords: ACGA, Bi-Variate EDAs, Scheduling Problems,
Sequence-Dependent Setup Times, Common Due-Date

I. INTRODUCTION

In our previous studies [6], [7], [8], [9], ACGA has been
applied for solving several scheduling problems. The main
characteristic of ACGA is to alternate the EDAs and genetic
operators in each generation. Because other EDAs [3], [14],
[19], [29], [27] do not use genetic operators, this feature
distinguishes ACGA with others. This approach is beneficial
for EDAs to have a diversified population [12] where GA-EDA
[23] used similar framework.

ACGA utilizes an univariate probabilistic model which
extracts parental distribution from previous search when EDAs
operator is responsible for generating offsprings. After that, the
univariate probabilistic model is used to sample new solutions
called the artificial chromosomes. From these remarkable prior
results, ACGA is able to provide a satisfactory results.

The univariate probabilistic model of ACGA assumed that
there are no dependencies between/among variables. How-
ever, some researches pointed out when variable interactions

Min-Chih Chen
Institute of Manufacturing Engineering
National Cheng Kung University
Tainan, Taiwan (R.O.C.)
Email: cthunter@mail.wfc.edu.tw

exist, EDAs may employ the bi-variate or even the multi-
variate probabilistic models [5], [4], [14], [22]. Most important
of all, this research is going to study the single machine
scheduling problems with sequence-dependent setup time in
a common due date environment [28]. Because a prior job
influences the processing time of the next job, there exists
interactions between the jobs. Once ACGA is used to solve
this scheduling, we may not have a satisfactory result. A
new bi-variate probabilistic model together with the univariate
probabilistic model is adopted into the proposed algorithm.
The new algorithm is named extended artificial chromosomes
with genetic algorithm (eACGA). eACGA could have better
chance to capture more accurate parental distribution from
the two probabilistic models so that it could produce better
offsprings.

The organization of the paper is shown as follows: The
Section II indicates the importance of the studied scheduling
problems and its problem definition. We start to introduce
the details of eACGA in Section III. Section IV shows the
extensive comparisons with other algorithm in literature when
they are used to solve the studied scheduling problems. Finally,
we draw the conclusions in Section V.

II. THE BACKGROUND OF THE STUDIED SCHEDULING
PROBLEMS

This research discusses the single machine scheduling prob-
lems with sequence-dependent setup time in a common due
date environment. In addition, the objective is to minimize the
total earliness and tardiness cost. To point out the importance
of this studied scheduling problems, Section II-A presents the
literature survey and the problem statement. In Section II-B,
we further explain the model of the scheduling problem.

A. Review and Problem Statements

Single-machine scheduling problems are one of the well-
studied problems by many researchers. The application of
single machine scheduling with setups can be found in mini-
mizing the cycle time for pick and place (PAP) operations in
Printed Circuit Board manufacturing company [17]; in a steel



wire factory in China [15] and a sequencing problem in the
weaving industry [1]. The results developed in the literature
not only provide the insights into the single machine problem
but also for more complicated environment such as flow shop
or job shop.

The problem considered in this paper is to schedule a set
of n jobs {j1,jo2, - ,jn} on a single machine that is capable
of processing only one job at a time without preemption. As
explained in [2], [28], all jobs are available at time zero, and a
job j requires a processing time P;. Job j belongs to a group
g; € {1,...,q} (with ¢ < n). Setup or changeover times,
which are given as two g X g matrices, are associated to these
groups. This means that in a schedule where j; is processed
immediately after j; where ¢,j € {1,2,--- ,n} , there must be
a setup time of at least S;; time units between the completion
time of j;, denoted by Cj, and the start time of j; , which
is C; — P;. During this setup period, no other task can be
performed by the machine and we assume that the cost of the
setup operation is ¢ (g;; g;) > 0 and let it be equal to machine
setup time .S;; which is included as sequence dependent.

Apart from the sequence-dependent setup times, the ob-
jective is to complete all the jobs as close as possible to
a large, common due date d. To accomplish this objective,
the summation of earliness and tardiness is minimized. The
earliness of job j is denoted as E; = max (0,d — C;) and its
tardiness as 7; = max (C; — d, 0), where C} is the completion
time of job j. Earliness and tardiness penalties for job j are
weighted equally. The objective function is given by:

minZ =Y (E; +Tj) =Y _|d—Cj| (1)
j=1

j=1

The inclusion of both earliness and tardiness costs in the
objective function is compatible with the philosophy of just-
in-time production, which emphasizes producing goods only
when they are needed. The early cost may represent the cost
of completing a product early, the deterioration cost for a
perishable goods or a holding (stock) cost for finished goods.
The tardy cost can represent rush shipping costs, lost sales
and loss of goodwill. Some specific examples of production
settings with these characteristics are provided by [21]. The set
of jobs is assumed to be ready for processing at the beginning
which is a characteristic of the deterministic problem. The set
of jobs is assumed to be ready for processing at the beginning
which is a characteristic of the deterministic problem. As a
generalization of weighted tardiness scheduling, the problem
is strongly NP-hard in [18]. Consequently, the early/tardy
problem is also a strong NP-hard problem. It is the reason
why this work attempts to use eACGA to conquer this NP-
hard problem in a reasonable time.

B. Formulations of the Scheduling Model

The common due date model corresponds; for instance, to
an assembly system in which the components of the product
should be ready at the same time, or to a shop where several
jobs constitute a single customer’s order [13]. It is shown

in [16] that an optimal sequence in which the b-th job is
completed at the due-date. The value of b is given by:

s

The common due-date (k*) is the sum of processing times
of jobs in the first b positions in the sequence; i.e.,

if n is even
if nis odd ’

n/2

(n+1)/2 @

k* = Cy 3)

As soon as the common due date is assigned, see Fig. 1, jobs
can be classified into two groups that are early and tardy which
are at position from 1 to b and b+1 to n respectively. The
following notations are employed in the latter formulations.

[41: job in position j

A: the job set of tardy jobs

B: the job set of early jobs

S(j)lj+1): Setup time of a job in position [j+1] follows a job
in position [7]

APjj1j+1): Adjusted processing time for the job in position
7 followed by the job in position [j+1]

b: the median position

APjjij+1) s actually the processing time of job j + 1 with
setup time. Thus, the original form of APy, is Spjjj4+1) +
Pji1.

AP[D][I] AP[hral[h—zL_AP[b—llfb—ll AP[H][H AP[b][b—ll AP[b’l][b*l]AP[h—z]&—ﬁ] AP[n-ll[nl
‘ [ | | [b-2] | [b-1] | [bl [b+1] | [b+2] | [b+3] | """ ‘ [n] |
d
Fig. 1. The total earliness and total tardiness for a pre-assigned due-date d

Our objective is to minimize the total earliness/tardiness
cost. The formulation is given below.

Minimize f(z) = Z(EJ +T;)=TT+TE &)
j=1

where

TT: Total tardiness for a job sequence

TE: Total earliness for a job sequence

TT and T'E can be transformed into the following equations
based on the pre-defined adjusted processing time.

n—1

TT = ) (n—=j)AP 41 (5
j=b

TE=Y (j—1)AP; yp ©6)
j=1



III. METHODOLOGY

In order to capture the information of variable interactions,
we take the bi-variate probability model into considerate as
well. That is, eACGA extends from the ACGA, which not only
collect the order information of the job in the sequence but
also the variable interaction of the jobs. As a result, eACGA
could extract the parental information by using the univariate
probability model and bi-variate probability model.

The following Section III-A explains the proposed algorithm
in detail. Because the univariate and bi-variate are the core of
EDAs, they are further explained in Section III-B.

A. The procedures of eACGA

The major procedures of eACGA include population initial-
ization, selection of better chromosomes, and then to decide
whether EDAs or genetic operators is ran. After that, a
replacement strategy is used and then to test the stopping
criterion. The framework of eACGA is depicted in Fig. 2.

Population: A set of solutions

Generations: The maximum number of generations

OP(t): Univariate Probabilistic model

DP(t): Bi-variate Probabilistic model

t : Generation index

k : The execution of the EDA interval

startingGen : The generation at which the EDA will start to
run

1: Initialize Population

2: 140

3: Initialize OP(t) and DP(t)

4: while t < Generations do

5. Selection / Elitism(Population)

6: ifg%k==0andt > startingGen then
7.

researches use heuristic to generate better initial solutions in
this step. For example, dominance properties (DP) in [10] for
this studied scheduling problem is considered to generate a
single chromosome in eACGA. Shortest Adjusted Processing
Time first(SAPT) is the other heuristic could initialize good
initial solutions. The two heuristics are employed to work with
eACGA and they are named eACGApp and eACGAgapT,
respectively.

On the other hand, we also have to initialize the probabilistic
models used in eACGA in Line 3. No matter the univariate or
the bi-variate probabilistic models, each P;;(t) is initialized
to be 1, where n is the number of jobs and P;;(t) is the
probability of job ¢ in position j in a promising solution.
Step 2: Selection and Elitism Strategy (Line 5)

Evolutionary algorithms attempt to select fitter solutions
corresponding to their objective values. The selection operator
chooses better chromosomes to be survived. For the purpose of
simplicity, the binary tournament operator is employed, which
selects the better chromosomes with lower objective values
in this minimization problem. In order to preserve elites in
the population, a proportion of better chromosomes are stored
in an external archive and to be copied into the mating pool
during the selection stage.

Step 3: Decision (Line 6)

There are two parameters control whether the EDAs or
GAs is ran, which are startingGen and interval. The first
parameter startingGen is to determine the starting time of
generating artificial chromosomes. The main reason is that
the probabilistic model should be only applied to generate
better chromosomes when the searching process reaches a
more stable state.

The other important parameter interval sets the period of
artificial chromosomes generated. g % k represents that g

OP(t+1) «BuildUnivariateProbabilityModel(Selected mod k. When the resultant value is O, it means the current

Chromosomes)
8: DP(t+1) <BuildBiVariateProbabilityModel(Selected
Chromosomes)
9: Learning
10: Sampling new solutions into Population
11:  else
12: Crossover()
13: Mutation()
14:  end if
15:  EvaluateFitness (Population)
16:  Replacement()
17 t<+t+1
18: end while
Fig. 2. Algorithml: MainProcedure of eACGA()

We describe the methods in the following steps.
Step 1: Initialization

We initialize the population which consists a number of
chromosomes in Line 1. A chromosome represents a process-
ing sequence for the scheduling problem. Each chromosome
is generated randomly. In order to improve results, some

generation reaches the £ interval. As a result, the algorithm
alternates EDAs and genetic operators in the whole evolution-
ary progress. When we like to execute the EDAs, constructing
the probabilistic models, the learning of parental distribution,
and then samples new offsprings from probabilistic models.
They are described in Step 4.1.1 to Step 4.1.3. On the other
hand, genetic operators contain the crossover and mutation
operator which are Step 4.2.1 and Step 4.2.2, respectively.
Step 4: Variations

Step 4.1: eACGA Segment

Step 4.1.1: Modeling (Line 7 and Line 8)

The univariate probabilistic model and the bi-variate prob-
abilistic models are built while we run the EDAs. The former
one represents all jobs at different positions referring to the
frequency count of a job at the positions. The bi-variate prob-
abilistic model is similar to a container of interaction counters
which are blocking out the similar jobs in the sequences. Fuller
step by step detail will be presented in Section. I1I-B.

Step 4.1.2: Learning (Line 9)

As in PBIL [5], we update the two probabilistic models
in an incremental learning way. In addition, the learning
rate determines the importance of the current and historical



probability information. The probability learning models of
the univariate and bi-variate probabilistic models are shown
in Eq. 14 and Eq. 15, respectively.

Step 4.1.3: Sampling (Line 10)

Now that the two probabilistic models have been estab-
lished, the actual procedure implemented in the optimization
algorithm needs to be specified. The goal is to devise a
strategy to form the offspring populations which reflect the
two probabilistic models. For each position in the sequence
of a new individual, first we select a job randomly as the
first position, then according to the multiplication of two
probabilistic models, proportional selection fill out the other
sequence of a new individual.

Step 4.2.1: Crossover (Line 12)

This study applies the two-point central crossover operator
[20] to mate two chromosomes which are randomly selected.
Crossover rate (P.) decides whether the chromosome is mated
with others.

Step 4.2.2: Mutation (Line 13)

A chromosome is decided to be mutated if a random
probability value is lower than the mutation rate (P,,). The
swap mutation operator is used in our experiments. When
we decide to do the mutation, the genes of the two random
positions are swapped.

Step 5: Replacement (Line 16)

In order to improve the population quality and keep the
population diversity, an individual replaces with the worst
one in the parent population when the offspring is better.
Furthermore, the offspring must be different from any one of
the parent population.

B. Establishing probabilistic models

We explain how to establish univariate probabilistic model
first and then the bi-variate probabilistic model. Suppose
a population has M chromosomes X', X2, ..., XM at the
current generation ¢, which is denoted as Population(t). Then,
Xikj is a binary variable in chromosome k, which is shown in
Eq. 7.

1 if job 7 is assigned to position j

ko J g p J

Xy = { 0 Otherwise )
where i =1,...,n;5=1,...,n.

If job ¢ exists at position j, the number of occurrence of X
is incremented by 1. There are m chromosomes and the order
information of job 7 on position j (f;;) will be calculated as
follows:

f®)=>_ XfEi=1,...nj=1,..n (8)
k=1

The univariate probability model presents the occurrence
possibility of these jobs in the sequence at different positions.
In order to combine the univariate probabilistic model with bi-
variate probabilistic model, the univariate probabilistic model
Op;; will be the total number of times of appearance of job

1 before or in the position j at current generation ¢. Thus, the
ordinal probability is to accumulate the distribution Eq. 9 in
position j, which is as follows:

J m
Opw(t):Z(ZXZ)l,Zzl,77’L,.]:17,’r1, 9
=1 k=1
The ordinal probabilistic matrix of all jobs at different
positions are written as the Eq. 10.

Op11(t) Op1n(t)

opt) = | ; (10)
Opn1(t) Opnn(t)

Moreover, we explain how to establish a dependency prob-
abilistic model. A dependence (v;;) means a job ¢ neighbors
with another job j. Suppose a population has M strings
v 0%, ..., vM at current generation t. Then, v} is a binary
variable in chromosome k, which is shown in Eq. 11.

1
k _

where : =1,...,n;5=1,...,n.

The interaction information is collected from N best chro-
mosomes where only paired interactions between the jobs are
taken into account. Let Dp;;(t) (dependency probability) be
the number of times of appearance of job i after the job j at
current generation ¢. The Dp;;(¢) is updated as follows:

if job j connect to job i
Otherwise

(an

Dpij(t)=> b, i=1,...n, j=1,..n (12)
k=1

For the dependency probabilistic matrix of paired interaction
of all jobs, they are written as the Eq. 13.

0 Dp1o(t) Dp1n(t)
D 21 (T 0 D on (T
by | P00 P )

Furthermore, the above two probabilities with learning can
continue to modify the search space to improve the perfor-
mance, the equation as the Eq. 14 and Eq. 15. In this research,
two parameters ordinal learning rate (Aop € (0,1)) and
dependent learning rate (App € (0, 1)) are decided by Design-
of-Experiment (DOE), we discuss them in next session.

Opij(t) = Opij(t) X (10 — /\Op) + Opij(t — 1) X )\Op (14)

As soon as the ordinal Op and dependent probability Dp
are built, jobs are assigned onto each positions. As far as
the diversification concerns, there are three ideas for creating



diversified artificial chromosomes. The first is the assignment
sequence for each position assigned in random sequence. The
second is proportional selection which is used to mitigate the
probability of job ¢ assigned to a position j. The third is zero
value transformation which is used to transform 0 into 1/n in
dependent probability when jobs do not have any interactions.
The assignment procedure is determined as follows:

S: A set of shuffled sequence which determines the
sequence of each position is assigned a job.

Q: The set of un-arranged jobs.

J: The set of arranged jobs. J is empty in the beginning.

0: A random probability is drawn from U(0, 1).

i: A selected job by proportional selection

k: The element index of the set .S

S < shuffled the job number [1...n]
J+— P
while k& # ® do
0+ U(0,1)
Select a job ¢ satisfies 0 < OP;, X
DP;jp—1y/ > OP(i,k) x DP(i,J(k — 1)), where
1€
J(k) « i
Q «— Q\i
S+ S\k
end while

IV. EXPERIMENT RESULTS

The testing instances are designed by [25] and the job size
of each instance includes 10, 15, 20 and 25. The property
of the processing time range contains low, median and high,
which are based on Uniform(10, 60), Uniform(10, 110) and
Uniform(10, 160), respectively. Each combination has 15
similar instances, the total number of instance is 180 (4*3*15)
and each instance is replicated 30 times for our proposed
algorithm and the compared Algorithms. In order to configure
the parameter settings, we utilized the DOE to select the best
setting of eACGA parameters. Table. I shows the parameters
setting of the eACGA experiment. We code the algorithm in
Java and to be ran on Windows 2003 server (Intel Xeon 3.2
GHZ).

AN

0L 23D

TABLE I

eACGA PARAMETERS SETTING
Factor Default
Crossover Rate 0.5
Mutation Rate 0.3
Starting generation 0
Interval 2
Ordinal probability learning rate 0.1
Dependent probability learning rate 0.5
Population Size 100
Generations 1000

In order to evaluate the performance of eACGA, they are
compared with some algorithms in literature. We divide these
algorithms into two groups which are stand-alone algorithms

and hybrid algorithms. To test the efficiency of our proposed
eACGA against the stand-alone algorithms, we compare the
SGA [26], ACGA [11] and SAPT [24]. We also select some
hybrid algorithms, such as SGApp [10], ACGApp [11] and
SAsapr [24]. In addition, when eACGA works with two
heuristic algorithms DPs [10] and SAPT [24], they are called
eACGApp and eACGAg 4pr, respectively. Because DPs and
SAPT generate good initial solutions, eACGA takes these
solutions as the initial population. The brief information of
these algorithms is discussed as follows:

e SGA [26]: A standard genetic algorithm with elitism
strategy. The genetic operators include binary tournament
selection, two-point central operator and swap mutation
operator. During the selection stage, 10% of elites in the
population are reserved to the next generation. We use
the data from [10] for comparison.

e ACGA [11]: We mentioned that ACGA does not consider
the dependencies between/among variables. When ACGA
is used to solve the benchmark problems in this study, we
could distinguish the performance difference when we
employ the bi-variate probabilistic model together with
the univariate probabilistic model.

e SGApp [10]: Dominance properties (DPs) were devel-
oped by swapping the neighborhood jobs. The DPs are
very efficient when combined with the GA. We take the
results from [10] for comparison.

o ACGApp [10]: According to the research of ACGA [11]
and DPs [10], we combine both algorithms to solve the
single machine scheduling problems with setup costs.
DPs are utilized to generate a set of good initial solutions.
ACGA takes the advantage of these good initial solutions
and then continue the evolutionary progress. We expect
ACGApp could perform better than ACGA.

e SAPT [24]: Shortest Adjusted Processing Time
first(SAPT) is based on a concept: Jobs with shorter
adjusted processing times to be scheduled, which shall
closer to the median position in an optimal job sequence.
They also combined SAPT with simulated annealing
(SA) algorithm, called SAPT-SA. Since the presented
data of SAPT-SA [24] is not completed and termination
condition is different from our experiments, we only
used the SAPT data from [24] for comparison.

To compare the performance of these algorithms clearly,
we employs the average relative error ratio. In literature,
the average relative error ratio is often used to evaluate the
performance of algorithms, whereby the error ratio (ER;) of
a solution (X;) generated by an algorithm is calculated as
follows:

Objavg(Xi) - Optz
Opt;

Where Opt; is the objective value of the best known or op-
timal solution which is available by [28] who applied Branch-
and-Bound algorithm to derive the solution. The Obja,4(X;) is
the X; average objective value. Table II showed the statistics

ER; = * 100, (16)



of the average E'R values of all the algorithms on the test
instances.

It can be seen from algorithms without hybridization in Ta-
ble II, the eACGA outperforms SGA and ACGA. Particularly,
the average error ration of eACGA is one-half of the ACGA. It
is clearly that the effort of bi-variate probability model is quite
beneficial for the sequence-dependent scheduling problems.
Then, there is no difference between eACGA and SAPT
because the difference is within the range of random error.



TABLE I

AVERAGE ERROR RATIO EVALUATION OF ALGORITHMS

Without hybridization

With hybridization

Type Size SGA ACGA SAPT eACGA SGApp ACGApp eACGApp eACGAgapr
10 086 063 255 0.27 0.31 0.28 0.18 0.11
low 15 421 405 359 185 3.13 293 1.40 0.77
20 9.58 883 313 397 6.85 6.98 3.66 1.80
25 13.18 11.81 321 6.10 9.44 9.55 5.15 2.06
10 1.89  1.29 280 0.18 0.93 0.94 0.26 0.36
med 15 786 684 533 311 4.74 4.69 2.30 0.89
20 1393 1253 393 5.74 10.06 9.86 4.90 2.25
25 20.80 18.83 596  9.55 14.83 15.32 8.56 4.26
10 1.37  1.16 280 0.04 0.54 0.62 0.00 0.13
high 15 970 935 822 342 6.38 5.66 2.44 0.69
20 21.04 1818 595 7.78 13.94 13.55 6.62 3.70
25 27.88 2474 6.83 13.09 20.22 19.78 10.88 4.84
Avg  11.03 985 453 4.59 7.61 7.51 3.86 1.82
TABLE III
AVERAGE CPU TIME EVALUATION OF ALGORITHMS
Without hybridization With hybridization
Type Size SGA ACGA SAPT eACGA SGApp ACGApp eACGApp eACGAgsapT
10 026 039 001 0.70 0.39 0.57 0.98 0.77
low 15 031 047 003 1.18 0.46 0.71 1.42 1.25
20 037 056 0.07 1.85 0.54 0.90 2.06 1.96
25 043 065 0.18 2.60 0.63 1.09 2.79 2.79
10 026 039 002 072 0.38 0.57 0.98 0.77
med 15 031 047 004 1.18 0.46 0.71 1.42 1.25
20 037 056 006 1.86 0.55 0.89 2.06 1.96
25 043 066 012 2.60 0.63 1.09 2.79 276
10 026 039 007 0.73 0.38 0.57 0.98 0.77
high 15 031 046 011 1.18 0.46 0.72 1.42 1.25
20 037 056 013 1.86 0.54 0.89 2.06 1.95
25 043 065 0.18 2.60 0.63 1.09 2.79 2.75
AVG 034 052 009 1.59 0.50 0.82 1.81 1.69




Apart from the stand-alone algorithms, two heuristics are
further embedded in meta-heuristic algorithm to improve the
efficiency and effectiveness of the global searching procedure.
The results of the hybrid framework are also shown in Ta-
ble II. both eACGApp and eACGAg4pr Wwere better than
eACGA and SAPT in terms of average relative error ratio. For
example, eACGAg4pr was 2.5 times lower than SAPT and
eACGAgsapr algorithm was 4.2 times lower than SGApp.
The empirical results show the domain-specific heuristics are
useful for the studied scheduling problem and eACGAgapT
achieves the best solution quality when it is compared with
others in literature.

We further compared the CPU time of these algorithms.
The results are given in Table III. The SGA appears more
efficient than eACGA and ACGA in terms of CPU time
because it requires a linear time to create new solution,
whereas artificial chromosome requires O(n?) time. ACGA
is faster than eACGA because we execute the EDAs more
frequently in eACGA than the one in ACGA. In addition, due
to eACGA needs to construct a bi-variate probabilistic model,
it takes longer time to do so. In comparison of eACGApp
and eACGAgapr, eACGAg4pr was superior to eACGApp
in terms of CPU time. Although DPs and SAPT both used
general pair-wise interchange (GPI) for the sequence, SAPT
only uses the neighborhood which is generated by every
possible pairwise interchange, i.e. the neighborhood distance
is 1. However, the neighborhood distance of DPs is 2 and 3. It
is the reason why DPs may need longer computational time.

V. DISCUSSION AND CONCLUSIONS

This work proposed the eACGA which enables the ACGA
to deal with interactions between the variables. Both univariate
and bi-variate probabilistic models are used in eACGA so that
the eACGA could extract more accurate problem structure
from parental distribution. eACGA and other algorithms are
used to deal with the single machine scheduling problem
with sequence-dependent setup times in a common due date
environment. Due to the problem properties that former job
impacts the processing time of the next job, there exists strong
variable interactions in the problem. As a result, when eACGA
is compared with ACGA, eACGA is superior to ACGA
because the average error ratio of eACGA is just one-half
of the ACGA. It is apparently that the bi-variate probabilistic
model together with univariate probabilistic model could gain
more information from previous search for the condition of
sequence-setup times.

Except the bi-variate probabilistic model is useful, some
domain-specific heuristics could further improve the solution
quality of eACGA. When eACGA works with DP or SAPT,
the two hybrid algorithms are further improved, particularly
the eACGAg 4 pr is the state-of-art when it is compared with
others in literature. In the future study, eACGA could be
used to solve larger-size single machine sequence-dependent
scheduling problems than existing 25-jobs benchmarks. The
larger-size instances could distinguish the performance of the

different algorithms. So we could understand the advanatage
or disadvantage of the proposed algorithm.
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This research is the first research which consider the bi-objective single machine
scheduling problem with the consideration of the learning effect and
past-sequence-dependent effect. Because this kind of scheduling research have

attracted many attentions, this paper is of interesting for the academic field.
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