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一、中文摘要 

本計劃研究排程優勢性質 (Dominance 

Properties)與具機率模式的自指引基因演算

法(Self-Guided Genetic Algorithm)之結合，用

來有效解決單機與平行機排程問題。在本計

劃的前半段研究時間裡，本研究先完成推導

單機與平行機排程問題的優勢性質之後，發

現排程優勢性質的運作效率高且能得到較好

的解，且可以進一步與本主持人所提出的自

指 引 遺 傳 演 算 法  (Self-Guided Genetic 

Algorithm)結合，改善排程的結果。 

第二年加入整備時間(Setup time)於單機

與平行機排程問題之中，因為整備時間使得

排程問題更為複雜，因此過去的方法較難得

到好的結果，因此本研究也推導在考慮整備

時間的單機與平行機排程優勢性質，協助演

算法得到較好的結果，之後也與自指引基因

演算法結合，也得到比過去有顯著性改善的

結果。 

有鑑於研究結果能有效的解決這些複雜

的排程問題，目前已有兩篇論文已被 SCI 期刊

接受，另外還有審查中與國際研討會的論文發

表各一篇。 

最後，由本研究的結果可以了解到排程的

優勢性質的優點，因此在研究排程問題的學

者，可以朝此方向導出其他問題的優勢性質，

除了可與不同的演算法來做結合，也能透過自

指引基因演算法帶來更好的求解品質。 

關鍵詞：具機率模式之演化式演算法, 排程, 
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More and more sophisticated Estimation of Distri-
bution Algorithms (EDAs) have been proposed and
developed to solve combinatorial problems in recent
years. Some of them were quite successful; how-
ever, it is not always clear why and how an EDAs
works. Recently, a number of evolutionary algo-
rithms that guide the exploration of the search space
by building probabilistic models of promising solu-
tions found so far have been proposed. For sample
drawn from an unknown probability distribution, the
selected set of promising solutions allow the opti-
mization algorithm to generate new solutions that are
somehow similar to the ones contained in the origi-
nal selected set of solutions. There are algorithms
that are able to estimate that probability distribution
by using the selected set of solutions itself and use
this estimate to generate new solutions. These algo-
rithms are called Evolutionary algorithms based on
probabilistic models (EAPMs) [1, 2, 3, 4, 5, 6, 7].

EAPMs rely on probabilistic model which is built
by parental distribution and sample from the model.
There are some algorithms of EAPMs that employ
probabilistic model to building genetic algorithms,
such as EA/G [8], ant-miner [1], ACGA [9] and Self
Guided GA [10]. In these solutions are selected from
an initially randomly generated population of solu-
tions like in the simple GA. Then, the true proba-
bility distribution of the selected set of solutions is
estimated and new solutions are generated according
to this estimate. The new solutions are then added
into the original population, replacing some of the
old ones. The process is repeated until the termina-
tion criteria are met.

In [11], they stated when an appropriate heuris-
tic approach is incorporated into an EAPM, the per-
formance of the EAPM is improved. [12] discussed
some properties of the optimal solution, and these
properties are used to develop both optimal and
heuristic algorithms. In [13], they analyzed the per-
formance of various heuristic procedures, including
dispatch rules, a greedy procedure and a decision
theory search heuristic. Among the heuristics, [14]
developed several dispatch rules and a filtered beam
search procedure. [13] presented an additional dis-
patch rule and a greedy procedure, and also consid-
ered the use of dominance rules to further improve
the schedule obtained by the heuristics. In our previ-
ous study [15], dominance properties of (the condi-
tions on) the optimal schedule are developed based

on the switching of two adjacent jobs i and j. These
dominance properties are only necessary conditions
and not sufficient conditions for any given schedule
to be optimal. The DPs are good at generating ef-
ficient solutions which might be helpful for genetic
algorithm to obtain better parental distribution in the
beginning.

Consequently, the two-year project considered a
framework which integrates the dominance proper-
ties and EAPM to enhance the solution quality when
we solve scheduling problems. This research stud-
ied two kinds of scheduling problems in the first
year; one is the single machine scheduling prob-
lems, and the other is the parallel scheduling prob-
lems. When we studied the single machine schedul-
ing strongly NP-hard problems to minimize the to-
tal earliness and tardiness costs. Then, the parallel
machine scheduling problems are to minimize the
makespan of the scheduling jobs.

Based on the results of the first year project, the
second year project studied the scheduling problem
considering the setup cost. When the setup cost is
considered, the problems are even harder than the
ones in the first year. As a result, this research
also derived the dominance properties for the single
machine and parallel machine scheduling problems
with setup cost.

When we conducted the experiments, we compare
with the influence of dominance properties to fur-
ther improve the solution quality of EA/G, ACGA
and Self-guided GA and take a close look at the evo-
lutionary diversity for a single machine scheduling
problem. We find out dominance properties are good
for solution quality of Self-guided GA in the pro-
posed framework. In addition, because DPs are ex-
cellent to yield good solution quality no matter the
single machine scheduling problems as well as the
parallel machine scheduling problem, the research
results have been accepted by some SCI journals and
an international conference. There is a SCI paper
which is still under review. The detail list is shown
below:

1. Chang, P. C., and S. H. Chen (2010),
“Integrating Dominance Properties with Ge-
netic Algorithms for Parallel Machine Schedul-
ing Problems with Setup Times,” accepted by
Applied Soft Computing Journal.

2. Chang, P. C., S. H. Chen, T. Lie, and Y. C.
Liu (2011), “A Genetic Algorithm Enhanced



by Dominance Properties for Single Machine
Scheduling Problems with Setup Costs,” ac-
cepted by International Journal of Innovative
Computing, Information and Control, 7(4).

3. Shih-Shin Chen, Pei-Chann Chang, Min Chih
Chen, and Yuh Min Chen (2009), A Self-
guided Genetic Algorithm with Dominance
Properties for Single Machine Scheduling prob-
lems, 2009 IEEE Symposium on Compu-
tational Intelligence in Scheduling (CISched
2009), Nashville, TN, U.S.A.

4. Shih-Shin Chen, Pei-Chann Chang, Min
Chih Chen, Estimation of Distribution Algo-
rithms with DominanceProperties for Machine
Scheduling problems, submitted to Applied
Mathematical Modelling.

Tthrough these fruitful research results, re-
searchers could understand the DPs are beneficial to
solve the scheduling problems. It is a good direc-
tion for the academic researchers in doing schedul-
ing problems. Moreover, DPs could be further inte-
grated with other meta-heuristics to further improve
the solution quality while the Self-Guided GA might
be a potential algorithm could be applied. Finally,
because there are many research result carried out by
this research while the number of pages is limitted,
the final report illutrates the DPs with Self-Guided
GA which solves single machine scheduling prob-
lems first. And then to show the derivation of DPs
for single machine and unrelated parallel scheduling
problem which consider the setup cost.

3 研研研究究究報報報告告告應應應含含含的的的內內內容容容

3.1 DPs with Self-Guided GA for the
Single Machine Scheduling prob-
lems

In this paper, a deterministic single machine schedul-
ing problem without release date is investigated and
the objective is to minimize the total sum of earli-
ness and tardiness penalties. A detailed formulation
of the problem is described as follows: A set of n in-
dependent jobs {J1, J2, ..., Jn} has to be scheduled
without preemptions on a single machine that can
handle at most one job at a time. The machine is
assumed to be continuously available from time zero

onwards and unforced idle time is not allowed. Job
Jj , (j = 1, 2, ..., n) becomes available for process-
ing at the beginning, requires a processing time pj
and should be completed on its due date dj . For any
given schedule, the objective is to find a schedule
that minimizes the sum of of the earliness and tardi-
ness penalties of all jobs

∑n
j=1(�jEj + �jTj) where

�j and �j are the earliness and tardiness penalties of
job Jj . The inclusion of both earliness and tardiness
costs in the objective function is compatible with
the philosophy of just-in-time production, which em-
phasizes producing goods when they are needed.

We derive the dominance properties for two adja-
cent jobs (i and j), which has distinct due dates (di
and dj), earliness penalties (�i and �j), and tardiness
penalties (�i and �j). The processing time of these
jobs are pi and pj . The dominance properties give
the precedence relationship between any two adja-
cent jobs in a schedule. In the optimal schedule, all
the adjacent jobs will satisfy the dominance proper-
ties.

There is a schedule Π, in which two adjacent jobs
i and j are in positions k and k + 1 respectively. We
consider the objective function Z(Π) for this sched-
ule Π. we rewrite the objective function Z(Π), in
such a way that only terms corresponding to jobs (i
and j) in positions k and k + 1 are present explicitly
in the objective function Z(Π). The other terms are
absorbed in constants defined below.

Z(Π) = G1 + G2 + i∣di − fi∣ + j∣dj − fj∣ (1)

where

G1 =
k−1∑
l=1

l∣dl − fl∣

G2 =
n∑

l=k+2

l∣dl − fl∣

In the above expressions, the value of p is defined
as follows:

∙ p = �p, if dp > fp; this means that job p is an
early job.

∙ p = �p, if dp < fp; this means that job p is a
tardy job.

∙ p = 0, if dp = fp; this means that job p is an
on time job.



Consider the schedule Πx given as

Πx = {∗ ∗ ∗ ... i j ∗ ... ∗ ∗} (2)

The schedule Πx, the jobs i and j are in positions k
and k+ 1 respectively. In Πx ’*’ denotes some other
jobs (other than i and j) are in that positions 1 to n
(other than positions k and k + 1). In the schedule
Πx, the finish time (fi) of job i is (A+ pi) and finish
time (fj) of job j is (A+ pi + pj). The value of A is
the finish time of the job in position (k − 1) and is

A =
k−1∑
l=1

pl (3)

When the jobs i and j are interchanged the schedule
Πx, the resulting schedule is Πy and is

Πy = {∗ ∗ ∗ ... j i ∗ ... ∗ ∗}

Note that in schedule Πy only the jobs i and j are
interchanged and all other jobs are in the same posi-
tions as in schedule Πx. In Πy, the finish time (fj)
of job j is (A + pj) and finish time (fi) of job i is
(A + pj + pi). We will compare the schedules Πx

and Πy and find the conditions under which Πx is
better than Πy. These conditions are the dominance
properties.

In this schedule Πx, the jobs i and j are either
early, tardy or on time, respectively. Thus there are
nine status of the job status combination when we
consider the jobs i and j.

Let P be the sum of processing time of all the jobs.
(P =

∑n
j=1 pj). We assume that dj < P , for all jobs

(j = 1, 2, ..., n). We discuss the case when this as-
sumption is not true later. With this assumption, we
consider the above mentioned nine status and to il-
lustrate first status in detail and derive the dominance
properties.

Status.1: Consider two adjacent early jobs i (in po-
sition k) and j (in position k + 1) in the schedule
Πx. This two adjacent jobs are early means that
di > (A + pi) and dj > (A + pi + pj). This
dj > (A+pi+pj) implies that dj > (A+pj). Hence,
there are two possibilities on di as given below.

∙ Possibility.(i). di > (A+ pi + pj)

∙ Possibility.(ii). di < (A+ pi + pj).

Possibility.(i). Here in the schedule Πx jobs i and
j (in positions k and k + 1) are early jobs. After
interchange, in the schedule Πy, the jobs j and i (in
positions k and k+1) are also early jobs. This means
that di > (A+pi), dj > (A+pj), di > (A+pi+pj)
and dj > (A+ pi + pj). The total absolute deviation
Z(Πx), Z(Πy) for the schedules Πx, Πy are
Z(Πx) = G1 + G2 + �i(di −A− pi) + �j(dj −A− pi − pj) (4)

Z(Πy) = G1 + G2 + �j(dj −A− pj) + �i(di −A− pj − pi) (5)

We now derive the condition under which
Z(Πx) ≤ Z(Πy). Let X = Z(Πy)− Z(Πx) and is
given by

X = − �ipj + �jpi (6)

From the above expression, we see that X ≥ 0
when the following condition is satisfied.

pi
�i
≥ pj
�j

(7)

We see that if X > 0, then the schedule Πx is
better than the schedule Πy; i.e., Z(Πx) < Z(Πy). If
X = 0 then Z(Πx) = Z(Πy). For this case, job i
will come before job j only when pi

�i
≥ pj

�j
. Based

on this analysis, we state the following property.

Property.1: In the schedule Πx, for two adjacent
early jobs i (in position k) and j (in position k + 1),
and if di > (A + pi + pj), then the schedule Πx is
better than the schedule Πy, only when pi

�i
≥ pj

�j
.

The other possibility of Status 1 and other domi-
nance properties can be proved in the same manner.
For the further explanations, please refer to our work
in [15].

3.1.1 DP-Self-Guided Genetic Algorithm

After we introduced the DPs, this section describes
the detail procedures of the Self-guided GA. Because
Self-guided GA originally uses random solutions as
an initial population, DPs will replace it and gen-
erate good initial solutions for Self-guided GA. In
other words, the whole procedures are identical to
the original Self-guided GA except the initialization
of the population.

EAPMs extract the gene variable structure from
the population distribution and express it in a prob-
abilistic model [3]. This research embeds the prob-
abilistic model in the crossover and mutation opera-
tors to guide the evolution progress towards a more



promising solution space. The probabilistic model
serves as a fitness surrogate and the probabilistic
model evaluates the figure of merit of a new solution
beforehand. This means that the probabilistic model
will calculate the probability difference between two
selected genes located in different positions to guide
the movement of genes decided by the crossover and
mutation operators. As a result, the proposed EAPM
algorithm will guide the searching direction instead
of blindly searching the solution space since it does
not rely on proportional selection to generate solu-
tions.

The benefits of the proposed method are preserv-
ing the salient genes of the chromosomes, and ex-
ploring and exploiting good searching directions for
genetic operators. In addition, since the probabilis-
tic difference provides good neighborhood informa-
tion, it can serve as a fitness function surrogate. The
detailed procedure of the DP-Self-guided GA is de-
scribed as follows:

Population: A set of solutions
Generations: The maximum number of generations
P (t): Probabilistic model
t : Generation index

1: Initialize Population by Dominance Properties
2: t← 0
3: Initialize P (t)
4: while t < generations do
5: EvaluateFitness (Population)
6: Selection/Elitism(Population)
7: P (t + 1) ← BuildingProbability-

Model(Selected Chromosomes)
8: Self-Guided Crossover()
9: Self-Guided Mutation()

10: t← t+ 1
11: end while

Figure 1: Algorithm1: MainProcedure of DP-Self-
guided GA()

Step 1 is the initialization of a population by dom-
inance properties. DPs generate good solutions and
Self-guided GA does further evolution based on this
good basis. Step 2 initializes the probability ma-
trix P (t) and the matrix size is n − by − n, where
n is the problem size. Step 7 builds the probabilis-
tic model P (t) after the selection procedure.In Step
8 and Step 9, P (t) is employed in the self-guided
crossover operator and the self-guided mutation op-
erator. The probabilistic model will guide the evolu-
tion direction, which is shown in Section 3.1.2 and
Section 3.1.3. In this research, the two-point cen-

tral crossover and swap mutation are applied in the
crossover and mutation procedures for solving the
scheduling problem under study.

We explain the proposed algorithm in detail in the
following sections. We explain how the probabilistic
model guides the crossover and mutation operators.

3.1.2 Mutation Operator with Probabilistic
Model

Suppose two jobs i and j are randomly selected and
they are located in position a and position b, respec-
tively. pia and pjb denote job i in position a and job
j in position b. After these two jobs are swapped,
the new probabilities of the two jobs become pib and
pja. The probability difference Δij is calculated as
Eq. 8, which is a partial evaluation of the probability
difference because the probability sum of the other
jobs remains the same.

Δij = P (X ′)− P (X)

≈
n∏

p/∈(aorb),g=[p]

Pt+1(Xgp)[(pibpja)− (piapjb)].
(8)

Now that the part of
∏n

p/∈(aorb),g=[p] Pt+1(Xgp) is
always ≥ 0, it can be subtracted and Eq. 8 is simpli-
fied as follows:

Δij = (pibpja)− (piapjb). (9)

Δij = (pib + pja)− (pia + pjb). (10)

If Δij is positive, it implies that one gene or both
genes might move to a promising area. On the other
hand, when Δij is negative, the implication is that at
least one gene moves to an inferior position.

On the basis of the probabilistic differences, it
is natural to consider different choices of swapping
points during the mutation procedure. A parame-
ter TM is introduced for the self-guided mutation
operator, which denotes the number of tournaments
in comparing the probability differences among the
TM choices in swap mutation. Basically, TM ≥ 2
while TM = 1 implies that the mutation opera-
tor mutates the genes directly without comparing



the probability differences among the different TM
choices.

When TM = 2, suppose the other alternative is
that two jobs m and n are located in position c and
position d, respectively. The probability difference
of exchanging jobs m and n is:

Δmn = (pmd + pnc)− (pmc + pnd). (11)

After Δij and Δmn are obtained, the difference be-
tween the two alternatives is as follows:

Δ = Δij −Δmn. (12)

If Δ < 0, the contribution of swapping job m and
n is better, so we swap job m and n. Otherwise, jobs
i and j are swapped. Consequently, the option of a
larger probability difference is selected and the cor-
responding two jobs are swapped. By observing the
probability difference Δ, the self-guided mutation
operator exploits the solution space to enhance the
solution quality and prevent destroying some dom-
inant genes in a chromosome. Moreover, the main
procedure of the self-guided mutation is Eq. 12,
where the time-complexity is only a constant after
the probabilistic model is employed. This approach
proves to work efficiently.

3.1.3 Crossover Operator with Probabilistic
Model

The idea of Self-Guided Crossover is the same with
Self-Guided Mutation, which employs the probabil-
ity differences of the mating chromosomes by using
the Eq. 13. By doing so, we could evaluate which
chromosome is mated with a parent solution. For the
detail description, please refer in [16].

Δ = Δ1 −Δ2 =

n∏
p∈(CP1 to CP2),g=[p]

P (Candidate1gp)−

n∏
p∈(CP1 to CP2),g=[p]

P (Candidate2gp). (13)

To conclude, the DP-Self-guided GA is obvi-
ously different from the previous EAPM algorithms.
Firstly, the algorithm utilizes dominance properties

to generate good initial solutions. Secondly, the
proposed algorithm explicitly samples new solutions
without using the crossover and mutation operators.
The Self-guided GA embeds the probabilistic model
in the crossover and mutation operators to explore
and exploit the solution space. Most important of
all, the algorithm works more efficiently than pre-
vious EAPM in solving the scheduling problem be-
cause the time-complexity is O(n) whereas EAPM
needs O(n2) time.

3.1.4 Experimental Results of DP-Self Guided
GA

We conducted extensive computational experiments
to evaluate the performance of the combination of
dominance properties and Self-guided GA in solv-
ing the single-machine scheduling problem to mini-
mize the total weighted earliness and tardiness costs
[17]. We compared it with some algorithms in the
literature. We implemented the algorithms in Java
2 (With JBuilder JIT compiler) on a Windows 2003
server (Intel Xeon 3.2 GHZ). In all the experiments,
we replicated each instance 30 times.

The proposed algorithm was compared with SGA
and some other algorithms from the literature, in-
cluding GADP [15], ACGA [9], ACGADP [9],
ACGA with evaporation method [18], and EA/G [8].
For more detailed results, please refer to our web-
site1.

Since there were significant differences in the re-
sults produced by the different algorithms under test
(see Table 1), we conducted Duncan pairwise com-
parisons of the performance of the algorithms and
show the results in Table 2.

Table 1: ANOVA results on the objective values of
the single-machine scheduling problem produced by
different algorithms

Source DF SS Mean Square F Value P Value
instances 213 7.98E12 37457591062 1.94E7 <.0001
method 5 1214063.08 242812.62 125.66 <.0001

instances*method 1065 34492090.87 32386.94 16.76 <.0001
Error 37236 71952837.87 1932.35

Corrected Total 38519 7.9785746E12

When Duncan grouping is used, it shows that there
1http://peterchenweb.appspot.

com/publications/sourceCodes/
InjectionArtificialChromosomes/Results.
htm



are significant differences between/among subjects if
they are given different alphabets. Otherwise, there
are no differences between/among the subjects. In
Table 2, the results of Duncan grouping indicate that
the DP-Self-guided GA outperforms any other algo-
rithms. In addition, Self-guided GA performs as well
as ACGA and EA/G. Finally, GADP is the worst
in solving the single-machine scheduling problem in
this Duncan comparison.

Table 2: Duncan grouping of the objective values of
the single-machine scheduling problem produced by
different algorithms

Duncan Grouping Mean N Method
A 12827.07 6420 GADP
B 12816.47 6420 ACGADP
C 12813.66 6420 EA/G
C
C 12813.28 6420 ACGA
C
C 12813.25 6420 Self-Guided GA
D 12809.15 6420 DP-Self-Guided GA

3.2 DPs of Single Machine Scheduling
problem with Setup Cost

We consider the problem of scheduling n jobs in a
single machine and derive the dominance properties
(necessary conditions) of the optimal schedule. In
this section, we use the objective function (Z(

∏
))

for total absolute deviation for the schedule
∏

. To
develop these dominance properties, we will con-
sider interchanging two adjacent jobs and nonadja-
cent jobs in the schedule, and prove some interme-
diate results. The adjacent interchange and nonad-
jacent interchange of job i and job j are depicted at
figure 2 respectively.

(a) Adjacent interchange

(b) Nonadjacent interchange

Figure 2: Two different types of interchanging meth-
ods

Thus, there are two schedules, i.e.,
∏

X for sched-
ule X and

∏
Y for the modified schedule Y . The

corresponding objective functions of
∏

X and
∏

Y ,
i.e., Z(

∏
X) and Z(

∏
Y ), are listed as follows:

Z(
∏
x

) = G1 +G2 +G3 (14)

Z(
∏
y

) = G
′

1 +G
′

2 +G
′

3 (15)

where

1. G1: the objective of job(s) before job i

2. G2: the objective between job i and job j

3. G3: the objective of job(s) after job j

4. G′
1: the objective job(s) before job j

5. G′
2: the objective between job j and job i

6. G′
3: the objective of job(s) after job i

We compare schedules
∏

X and
∏

Y by finding the
conditions under which

∏
X is better than

∏
Y . For

a pair of jobs, i.e., job i and job j in a schedule, no
matter for adjacent interchange or nonadjacent inter-
change, they are in one of the following status:

1. Job i is early and job j is early

2. Job i is early and job j is on-time

3. Job i is on-time and job j is tardy

4. t: Job i is tardy and job j is tardy

Because the objective values of a schedule with
adjacent or nonadjacent interchange are different,
there are totally 8 conditions corresponding to these
two types of exchanges. Other than the cases dis-
cussed above, there is one extra case to be discussed
in nonadjacent interchange which is the following:

1. Job i is early and job j is tardy

Because of the length of this report, please refer to
the following paper for the detail procedures of the
DPs for the single machine scheduling problem with
setup considerations.

1. Chang, P. C., S. H. Chen, T. Lie, and Y. C.
Liu (2011), “A Genetic Algorithm Enhanced
by Dominance Properties for Single Machine
Scheduling Problems with Setup Costs,” ac-
cepted by International Journal of Innovative
Computing, Information and Control, 7(4).



3.3 DPs of Unrelated Parallel Machine
Scheduling Problems

3.3.1 Problem Definition

A Mixed Integer Program (MIP) is formulated
to find optimal solutions for the Unrelated Paral-
lel Machine Scheduling Problems with Sequence-
Dependent Times.

Minimize Cmax (16)

subject to

n∑
i = 0
i ∕= j

m∑
k=1

xi,j,k = 1 ∀j = 1, ..., n (17)

n∑
i = 0
j ∕= ℎ

xi,ℎ,k −
n∑

j = 0
j ∕= ℎ

xℎ,j,k = 0 ∀ℎ = 1, ..., n,

(18)
∀k = 1, ...,m

Cj ≥ Ci+
m∑
k=1

xi,j,k(Si,j,k+pj,k)+M

(
m∑
k=1

xi,j,k − 1

)
(19)

∀i = 0, ..., n ∀j = 1, ..., n

n∑
j=0

x0,j,k = 1 ∀k = 1, ...,m (20)

xi,j,k ∈ {0, 1} ∀i = 0, ..., n, ∀j = 0, ..., n,
(21)

∀k = 1, ...,m

C0 = 0 (22)

Cj ≥ 0 ∀j = 1, ..., n (23)

where, Cj: Completion time of job j pjk: Pro-
cessing time of job j on machine k Sijk: Sequence-
dependent setup time to process job j after job i on
machine k S0jk: Setup time to process job j first on
machine k xijk: 1 if job j is processed directly after
job I on machine k and 0 otherwise x0jk: 1 if job j is
the first job to be processed on machine k and 0 oth-
erwise xj0k: 1 if job j is the last job to be processed
on machine k and 0 otherwise M: a large positive
number.

The objective (16) is to minimize the makespan.
Constraints (17) ensure that each job is scheduled

only once and processed by one machine. Con-
straints (18) make sure that each job must neither be
preceded nor succeeded by more than one job. Con-
straints (19) are used to calculate completion times
and to ensure that no job can precede and succeed the
same job. Constraints (20) ensure that no more than
one job can be scheduled first at each machine. Note
that there is no need for another set of constraints to
guarantee that only one is scheduled last on each ma-
chine because this is guaranteed by constrains (20) in
conjunction with (18). Constraints (21) specify that
the decision variable x is binary over all domains.
Constraints (22) state that the completion time for
the dummy job 0 is zero and constraints (23) ensure
that completion times are non-negative. Optimal so-
lutions for the problem then can be obtained by solv-
ing the MIP software solver.

3.3.2 Derivations of Dominance Properties

We consider the problem of scheduling n jobs into
unrelated parallel machines and to derive the dom-
inance properties (necessary conditions) of the op-
timal schedule. In this section, we use the objec-
tive function (Z(

∏
)) for the makespan of schedule∏

. In order to derive the dominance properties for
schedule

∏
, we consider interchanging two jobs on

the same machine or on different machines to prove
some intermediate results.

[j]: The job is at position [j]

P[j][k]: The processing time of the job at position [j]
on machine [k]

S[i][j][k]: The setup time of the job at position [j] is
after the job [i] on machine [k]

AP[i][j][k]: The adjusted processing time of the job at
position [j] is after the job [i] on machine [k]. Thus,
AP[i][j][k] is actually equal to P[j][k] plusS[i][j][k].

Ck1:The completion time on k1

G1[k]: The job set before job [i] on machine k

G2[k]: The job set between job [i] and job [j+1] on
machine k

G3[k]: The job set after job [i] on machine k

Due to the page limit, please refer to the following
paper:
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