English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 914883      線上人數 : 890
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/18300


    題名: 客製化模組產品推薦服務系統建立之研究
    其他題名: The Study of Building Recommendation Service Systems For Customization Modular Products
    作者: 洪飛恭
    Hung, Fei-kung
    貢獻者: 企業管理系管理科學碩博士班
    陳淼勝
    Miao-sheng Chen
    關鍵詞: 推薦服務;模組產品;客製化;模糊資訊公理;層級分析法
    Customization;Modular Product;Recommendation Service;Fuzzy Information Axiom;Analytical Hierarchy Process
    日期: 2011
    上傳時間: 2015-01-20 14:12:15 (UTC+8)
    摘要:   在顧客導向時代商品市場上,消費者可以視其不同需求狀況,購買不同型別或功能等級的產品,而製造商將各功能組件模組化後,即可以同一產品主體,延伸變化出不同類別等級的商品,增強產品的競爭力。   本文針對客製化模組產品設計,提供兩種不同理論模式,建立消費者需求、產品功能特徵及其兩者的關聯性評價,並運用不同理論,在經由專家意見建立模組產品資料庫中,評價出最合適的模組產品或功能元件;其後透過兩個不同的個案企業模組產品來建立消費者推薦服務系統,使企業可根據不同顧客需求,透過系統推薦顧客不同的模組產品,或是由顧客在系統上自行輸入基本需求,隨時可搜尋最合適顧客需求的商品。   本文客製化模組產品設計所建立的模式,產品設計模式一:以模糊資訊公理作為評價及決策法則;產品設計模式二:以層級分析法、模糊理論、倒傳遞類神經網路及灰關聯分析作為評價及決策法則;在今日網路與電子商務的技術已日趨成熟下,相信有許多的廠商,迫切需要一個能妥善引導顧客需求的推薦服務系統,廠商可從服務系統中、業務人員及廠商網站中取得顧客需求與選擇產品的相對資訊,這些資訊取得對企業產品的銷售及研發將有很大助益。
      In the era of customer-oriented merchandising marketing, consumers can depend on the status of their needs to purchase the products at different levels of model or function. Therefore, the manufacturers modulate their products by the level of functions and components. Hence, with the same major component of the product can be tuned to various categories and grades to enhance the competitiveness of their products.   In this research, we use two different theoretical models for customized modular product design to establish the relationship of product evaluation between the status of consumer demands and the features of the product. Furthermore, by using different theories and the database of the product modules, that built through the inputs of the experts, we build the criteria for recommending the most suitable product by its modulated functions or components. Then, such mechanism is used to provide customer recommendation system for two different companies with their modulated products. The company can use the system to recommend suitable modulated product according to the needs of different customers. The customer can also use the system to search the desired products by inputting the requirement information.    The model build by the customized modular product design in this research, product design model I: we use fuzzy information axiom as the evaluation and decision principle of the product design model. Product design model II: the Analytical Hierarchy Process, Fuzzy Set Theory, Back-Propagation neural network, and Gray Relational Analysis are also used for the evaluation and decision principle of the product design model.With the maturity of current network technologies and e-commerce practices, a suitable recommendation service system to guide customer’s needs is needed for marketing. The manufacturers can use this system to extract the information of the needs for their customers as well as the choices of the products the made. Such information should provide valuable inputs for the sales and future improvement of the product to the company.
    顯示於類別:[企業管理學系(管理科學碩/博士班,非營利事業管理碩士班)] 博碩士論文-管理科學碩博士班

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    099NHU05457001-001.pdf1149KbAdobe PDF640檢視/開啟
    index.html0KbHTML215檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋