南華大學機構典藏系統:Item 987654321/19550
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18278/19583 (93%)
造访人次 : 914261      在线人数 : 393
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/19550


    题名: 應用粒子群最佳化分群演算法於遺漏值問題之研究
    其它题名: The Study of Employing PSO Clustering into the Problem of Missing Values
    作者: 林宜德
    Lin, Yi-te
    貢獻者: 資訊管理學系碩士班
    邱宏彬
    Hung-pin Chiu
    关键词: 群集分析;粒子群最佳化;遺漏值
    particle swarm optimization;missing value;clustering analysis
    日期: 2010
    上传时间: 2015-03-16 11:42:34 (UTC+8)
    摘要:   在資料採礦的過程中,原始來源資料中的資料遺漏或缺失會造成分析結果異常與偏誤,若是用於企業組織決策支援,可能造成組織決策錯誤,影響企業經營績效。本研究以群集分析技術為基礎,選擇粒子群最佳化演算法發展一套遺漏值推估模組,並提出三個改良方法,透過實驗探討其改良成效。另外針對資料筆數較多之較大型資料集,本研究提出一個兩階段分群推估法,經過實驗證實可有效提昇演算效能。
      In the data mining process, the missing data of the original source will cause analysis results excepted and errors. If the decision support for the organization may lead to organizational decision-making errors, and affect business performance. In this study, cluster analysis based on particle swarm optimization choose to develop a set of missing value estimation module, and propose three improved methods , improvement through the experimental results. For large data sets, this study proposes a two-stage cluster estimation method, after a test proved to be effective to enhance routing performance.
    显示于类别:[資訊管理學系] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    098NHU05396032-001.pdf2088KbAdobe PDF32检视/开启
    index.html0KbHTML259检视/开启


    在NHUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈