傳統以來人工魚礁之佈置設計並無一定之施工規範可以依循,僅有如魚礁礁堆之體積大小或魚礁礁群彼此間距之建議;因此對於設計人工魚礁生態系統之生態工程師而言,當投放魚礁之位址及所欲投放之礁體選定之後,接下來所面臨的問題即是將這些人工魚礁佈置排列於所選定之場址中。根據過去的經驗,生態工程師之佈置設計所憑藉的大都為工程師的判斷,然怎樣的佈置形式是成本最低而能夠產生最佳之聚魚效果卻很少被討論。根據生態學家研究天然礁與魚類族群的關係後指出,複雜度對魚礁之設計是一重要的考量。因此本研究嘗試利用生態學家對生物群聚現象之觀察,並配合工程師之經驗,提出一空間顯式數學模型,以科學量化的方式討論人工魚礁之礁群佈置設計。模型之目標函式則為最大化棲地系統之複雜度,複雜度之大小則以碎形維度值來衡量;此外模型中亦一併考慮預算有限之情況,並考量購礁成本、拋放成本及佈礁礁群之擴散半徑等參數。另外本研究亦提出佈礁模型之啟發式解法,進而結合物種動態擴散遷徙模式,在不同成本預算與物種保育策略下,提供工程設計人員於實務設計上之佈置參考。而在參數敏感性分析方面,本研究則透過對佈礁工程之參數模擬,提出設計階段所應考慮及遵行之方針;最後並引用景觀生態學之觀念,利用空隙度指標進階量化分類所設計之人工棲地景觀格局。整體而言,本研究整合不同領域之知識,其過程跟結果並可提供實務工作者、景觀生態學家及管理科學家另一新的思維。 We applied perspectives on landscape ecology to propose a spatially explicit model, termed the DARCs (deployment of artificial reef communities) model, to address problems associated with configuring artificial reefs. The deployment of most artificial reefs involves configurations based on engineers' judgments, and the spatial and financial constraints of the system. These designs are often merely plausible and not necessarily optimal. The DARCs model tries to integrate ecological and engineering aspects to replace subjective deployment. The core of this model is based on the ecological concept that species diversity and biomass will increase with increasing habitat complexity. Here, we apply the fractal dimension (FD) to assess the habitat complexity. Moreover, we present a solving algorithm for achieving the maximal fractal dimension under a fixed budget. As regards ecolological applications, the proposed model to a case study was performed by considering the dispersal dynamics for a specific conservation policy, and creates an artificial habitat with several-small strategy in marine environment as well. In finally, we applied the lacunarity index as a complementary index, to characterize different spatial patterns that have the same FD value. Indeed, this study not only provide referenced guidelines for ecological engineers in deploying artificial reef programs, but also allow ecologists to explore some of the consequences of the geometrical configuration of environmental variability for species richness in future studies.