本論文在探討資料流在隨時間變動產生概念漂移的環境下 (Data Stream)之分類(Classification)問題,由於這個連續成長的資料環境下存在著One-pass的限制使得我們無法回顧其歷史資料。目前已經有些可應用的演算法,但它們均針對在如何保留資料的時效性而言(意即對目前時間點最有意義),而忽略掉為了保留時效性而付出的嘗試錯誤的成本,與概念穩定時所浪費的維護成本。因此偵測概念漂移之分類法可用於避免上述問題;然而這方法卻因為偵測方法的限制使它在多類別資料偵測上可能導致一些效率上的問題,故我們在統計的基礎上提出一個以卡方檢定為偵測方法的演算法稱為卡方漂移偵測演算法CDDC(Concept Drift Detection of Chi-Square),(往後以CDC、CDDC交替使用)用以針對漂移修建的觀念將其「屬性值-類別-概念元」觀念更正為「屬性值-概念元」,並實驗該偵測評估方法的有效性;且將其漂移調整案例再作細分。實驗證明在多類別分類問題上能確實能降低因概念元比對所造成的不必要的維護成本,以避免隨類別增加而可能導致的調整成本增加的問題,以及調整案例粗糙所可能造成的成本,達成高速資料流環境下多類別分類概念漂移問題之可行方案。 The present paper flows in the discussion material in changes as necessary produces under the concept drifting environment (DataStream) the classification the question. Because this continuously grows under the material environment has One-pass the limit to cause us to be unable to review its histor-icalmaterial. At present already some might the application develop the algorithm. How but do they aim at in retain the material the effectiveness for a period of time to say. But neglects for retain the attempt wrong cost which the effectiveness for a period of time pays, is stable with the concept when wastes maintenance cost. Detects classification of the Concept Drifting to be possible to avoid the above question. However this method actually because detects the method the limit to cause it detects in the multi-categories material on possibly cau-ses in some efficiency the question. Therefore we in the statistical foundation proposed as detects the method take the card side examination to develop the algorithm to be called the Chi-Square drifting to detect develops the algorithm. CDDC(Concept Drift Detection of Chi-S-quare). With take aims at the drifting construction the idea it "the attribute value-category-concept unit" the idea correction as "the attribute value-concept unit".