南華大學機構典藏系統:Item 987654321/21005
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18278/19583 (93%)
Visitors : 1026600      Online Users : 545
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nhuir.nhu.edu.tw/handle/987654321/21005


    Title: 構造以中醫論病情分析決策系統
    Other Titles: Design a Support Decision System for Chinese Medicine Comment Pathological Analysis
    Authors: 陳清坤
    Chen, Ching-Keoun
    Contributors: 資訊管理學系碩士班
    王昌斌
    Wang Chang-Bin
    Keywords: 資料探勘;診斷規則;決策樹;診斷規則知識模型;病情分析決策系統
    Data Mining;Diagnosis Rule;Decision Tree;Knowledge Model for Diagnosis Rule;Pathological Analysis Support Decision System
    Date: 2002
    Issue Date: 2015-05-25 16:50:54 (UTC+8)
    Abstract: 隨著科技進步,高品質的醫療服務是民眾的期望,在中、西醫學思維路線及表達工具的差異,中醫系統中大都屬於隱藏性的知識,如何從各種資料庫及相關資料中、找出病情各種相關性的症狀從而歸納出它們可能的病情,則可幫助中醫師在診斷時之決策參考,是本研究主要問題與目的。 本研究提供整合型決策支援系統以資料倉儲為基礎,使用知識挖掘、資料探勘的技術及決策系統來建構病情分析決策支援系統;確定決策診斷知識方法下,將病患病情診斷分析法則經貝氏分類法產生疾病屬性歸類規則並經網路學習除錯與認知後,以決策樹產生診斷規則,導出診斷規則知識模型,再用診斷規則知識模型來驗證病情分析結果,其中使用資訊科技技術,若以此延伸運用到各個領域,將有很大發展空間。 最後,我們以一些實例用以驗證此模型及診斷規則的準確性,期望對中醫診斷系統提供另一思考方向。
    As scientific technology is in progress, the desire of the public for a high quality of medical service is increasing. There is a difference in thinking processes and expression tools between Chinese and western medicine. Both medical systems belong to inner knowledge. Therefore, the objective of this study is to determine how to help Chinese medical doctors to make a decision in disease diagnosis on the basis of a variety of Database and related information from which possible disease-causing factors can be derived. This study support an integrated decision-supporting system based on the properties of Data Warehouse. The technique used are Knowledge Discovery, Data Mining and decision-making, in which a decision-supporting system can be obtained. Once the diagnosis is made through the knowledge-base decision, the patient's illness can be analyzed. On the basis of Bayer's classification, diseases can be classified. Through the learning of Bayesian Network to remove errors and make recognition, the Decision Tree could be obtained and the rule of diagnosis can be made. A knowledge model for diagnosis rule can be obtained on the basis of illness' analysis. In addition, this model can be used to analyze the disease by using the powerful interface from information technology. If this method can be applied to other fields, plenty of space for development will be made. Finally, we work out the practice on some real cases, and the system will be precisely made to analyze the consequence and predict patient's illness. We hope the Chinese -diagnosis system can provide another way of thinking in the field.
    Appears in Collections:[Department of Information Management] Disserations and Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML363View/Open


    All items in NHUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback