English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 911921      線上人數 : 587
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/23537


    題名: Extracting the Rules of KPIs for Equipment Management Based on Rough Set Theory
    作者: 王佳文;Wang, Jia Wen;Cheng, Ching Hsue
    貢獻者: 電子商務管理學系
    關鍵詞: Key Performance Indicators;Rough Set Theory (RST)
    日期: 2011-08
    上傳時間: 2015-10-05 17:09:00 (UTC+8)
    摘要: This paper practically collects manufacturing supplier dataset in Taiwan. The dataset includes production records, and there are 18 attributes such as production scheduling, scheduled downtime, process, etc. For comparison, decision tree, naive bayesian, and multi-layer perceiving are utilized to compare with the proposed procedure in classification accuracy. The results show that the correct rate of rough set theory is not only superior to decision trees, naive bayesian, and multi-layer perceiving (MLP), and the proposed procedure can be easy to understand and produce fewer rules. In managerial implication, the results can generate predictive model, and classifiable rule which can help manufacturing to find out key related factors in equipment throughput and use the rules generated as a capacity planning assessment.
    關聯: Advanced Materials Research
    vol. 314-316
    pp.2358-2361
    顯示於類別:[電子商務管理學系(停招)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML523檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋