English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 2124374      線上人數 : 162
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/23541


    題名: Multi-attribute fuzzy time series method based on fuzzy clustering
    作者: 王佳文;Wang, Jia-Wen;Cheng, Ching-Hsue;Cheng, Guang-Wei
    貢獻者: 電子商務管理學系
    關鍵詞: Fuzzy time series;Fuzzy clustering;Stock index futures forecasting
    日期: 2008-02
    上傳時間: 2015-10-05 17:09:07 (UTC+8)
    摘要: Traditional time series methods can predict the seasonal problem, but fail to forecast the problems with linguistic value. An alternative forecasting method such as fuzzy time series is utilized to deal with these kinds of problems. Two shortcomings of the existing fuzzy time series forecasting methods are that they lack persuasiveness in determining universe of discourse and the length of intervals, and that they lack objective method for multiple-attribute fuzzy time series. This paper introduces a novel multiple-attribute fuzzy time series method based on fuzzy clustering. The methods of fuzzy clustering are integrated in the processes of fuzzy time series to partition datasets objectively and enable processing of multiple attributes. For verification, this paper uses two datasets: (1) the yearly data on enrollments at the University of Alabama, and (2) the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) futures. The forecasting results show that the proposed method can forecast not only one-attribute but also multiple-attribute data effectively and outperform the listing methods.
    關聯: Expert Systems with Applications
    vol. 34, no. 2
    pp.1235-1242
    顯示於類別:[電子商務管理學系(停招)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML563檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋