Generally, a database system containing null value attributes will not operate properly. This study proposes an efficient and systematic approach for estimating null values in a relational database which utilizes clustering algorithms to cluster data, and a regression coefficient to determine the degree of influence between different attributes. Two databases are used to verify the proposed method: (1) Human resource database; and (2) Waugh's database. Furthermore, the mean of absolute error rate (MAER) and average error are used as evaluation criteria to compare the proposed method with other methods. It demonstrates that the proposed method is superior to existing methods for estimating null values in relational database systems.
關聯:
Knowledge and Information Systems vol. 12, no. 3 pp.379-394