English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 915514      線上人數 : 889
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/24767


    題名: Applying Fuzzy Candlestick Pattern Ontology to Investment Knowledge Management
    作者: 李俊宏;Lee, Chiung-Hon Leon;Liu, Alan
    貢獻者: 資訊工程學系
    關鍵詞: fuzzy candlestick pattern;data mining;ontology;financial time series
    日期: 2008-10
    上傳時間: 2016-11-10 15:42:13 (UTC+8)
    摘要: A fuzzy candlestick pattern based ontology is proposed for assisting candlestick pattern representation, storage, and reuse. Japanese candlestick theory is a widely used technical analysis method for stock and commodity investment decision making. The theory assumes that candlestick patterns reflect the psychology of market, and investors make investment decision by observing the pattern in the Candlestick chart. A candlestick pattern is composed of candlestick lines. We model the different part of a candlestick line with fuzzy linguistic variables and transfer the financial time series data to fuzzy candlestick lines. The user can use data mining algorithm such as decision tree to mine some candlestick patterns for investment decision making and the mined candlestick patterns could be stored in a database for different user's future reuse. Based on the proposed approach, we implement a system prototype to get experimental results. Our approach can be future used with other financial time series prediction results to provide users more information for investment decision making.
    關聯: 網際網路技術學刊/Journal of Internet Technology
    Vol. 9, no. 4
    pp.307-315
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Applying Fuzzy Candlestick.pdf1246KbAdobe PDF2036檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋