南華大學機構典藏系統:Item 987654321/25117
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18278/19583 (93%)
造访人次 : 914860      在线人数 : 867
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/25117


    题名: Fast exact k nearest neighbors search using an orthogonal search tree
    作者: 吳建民;Wu, Chien-Min;Liaw, Yi-Ching;Leou, Maw-Lin
    貢獻者: 資訊工程學系
    关键词: k nearest neighbors;Fast algorithm;Principal axis search tree;Orthonormal basis
    日期: 2010-06
    上传时间: 2017-07-19 17:04:39 (UTC+8)
    摘要: The problem of k nearest neighbors (kNN) is to find the nearest k neighbors for a query point from a given data set. In this paper, a novel fast kNN search method using an orthogonal search tree is proposed. The proposed method creates an orthogonal search tree for a data set using an orthonormal basis evaluated from the data set. To find the kNN for a query point from the data set, projection values of the query point onto orthogonal vectors in the orthonormal basis and a node elimination inequality are applied for pruning unlikely nodes. For a node, which cannot be deleted, a point elimination inequality is further used to reject impossible data points. Experimental results show that the proposed method has good performance on finding kNN for query points and always requires less computation time than available kNN search algorithms, especially for a data set with a big number of data points or a large standard deviation.
    關聯: Pattern Recognition
    vol. 43, no. 6
    pp.2351-2358
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML759检视/开启


    在NHUIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈