English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 913769      線上人數 : 341
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/26743


    題名: 添加奈米/微米金微粒之碘化鉀/碘酸鉀劑量計於γ光子劑量量測之應用
    其他題名: Application of γ-photon Dose Measurement with KI/KIO₃ Dosimeter Added with Nano/Micro Gold Particles
    作者: 林群智;吳坤隆;劉威忠;黃玉芬;Lin, Chun-Chih;Wu, Kun-Long;Liu, Wei-Chung;Huang, Yu-Fen
    貢獻者: 自然生物科技學系
    關鍵詞: 劑量;劑量計;輻射分解;碘化鉀;奈米金;dose;dosimeter;radiolysis;potassium iodide;nano gold
    日期: 2009-09
    上傳時間: 2019-01-04 11:16:49 (UTC+8)
    摘要: 本研究旨在探討KI/KlO₃ 劑量計在不同KI 濃度及添加微米金和奈米金微粒後,其各吸收峰對γ 光子吸收劑量之回應,並觀察其線性表現以及G 值的變化,並進而探討添加微米金及奈米金微粒後對於KI/KlO₃ 劑量計性能的影響。研究結果顯示, Kl/KlO₃溶液在352 、400 、426 及450 nm 處可找到吸收峰。未添加金微粒時, I₃⁻ 在352nm處之吸收度均隨吸收劑量(0-20 Gy) 增加而成線性增加,且低劑量量測以配製1.0 M KI 並使用352nm 處之吸收峰為佳,且在低劑量(≤20 Gy) 下,劑量愈低G 值愈高。在較高劑量(>20 Gy) 時,各吸收峰之吸收度與吸收劑量之間存在對數線性關係,且在波長較長處之吸收峰可用於量測更高之劑量,線性範圍廣闊,其中,在352nm處之吸收峰適於量測100Gy 以下之γ 光子劑量,而450nm 處之吸收峰適於量測100- 1000 Gy 之γ 光子劑量。添加微米金微粒後,吸收度與吸收劑量不再呈現對數線性,較低劑量(500 Gy 以下) ,以352nm 處吸收度之線性較佳,且其線性範圈可延伸至500 Gy。在400nm 處之吸收值存在50-200 Gy 及200-500 Gy 兩個線性範圍。而在較長之吸收波長( 426 及的450 nm) 處,當劑量低於500 Gy 時線性較差,在高劑量時則線性隨著波長增加且範圍隨之增廣,顯示添加微米金微粒之KI/KlO₃化學劑量計適合以較長之波長(426 及450 nm) 量測較高劑量,在352及450nm 處之吸收之G 值各在500 Gy 及200 Gy 時最高,而後緩慢降低。添加奈米金微粒後,KI(1.0 M)/KIO₃化學劑量計在352nm 處對於γ 光子劑量之回應與未添加奈米金微粒前相近(>2.0),但吸收度變化很小,不適於量測。在較長之吸收波長( 400 、426 、450 nm) 處,其靈敏度降低但線性範圍隨之增加,顯示添加奈米金微粒之KI/KIO₃ 化學劑量計適合以較長之波長(450 nm) 量測劑量;其中, 400 nm 處之吸收波長適合量測200 Gy 以下之吸收劑量, 426 及450nm 處之吸收波長均適合量測500Gy 以下之吸收劑量,且後者之線性範圍則可向更高劑量延伸。此外,在352 及450nm 處之G 值均隨劑量增加而提高9 各在500Gy 及1000 Gy 時達最大值。
    This research aimed to investigate the response of absorbance of KI/KIO₃ dosimeter irradiated by γ-rays before and after adding micro/nano gold particles. The variation of linearity and G values were also investigated to probe the effect of micro/nano gold particles on characteristics of KI/KIO₃ dosimeter. The results indicated that the KI/KIO₃ solution has absorption peaks at 352, 400, 426 and 450 nm. Before added with gold particles, the absorption of I3⁻ at 352 nm increased linearly with absorbed dose (0-20 Gy). Absorption at 352 nm was relatively better in measuring lower dose (≤20 Gy) when 1.0 M KI was prepared for the dosimeter. The G values decreased with dose (≤20 Gy) at 352 nm peak. At measuring higher dose (>20 Gy), the absorbance increased with dose in a logarithm relationship. Peaks at longer wavelengths were suitable for higher dose measurement, and the linear range was wide. Among them, the peak at 352 nm could be used to estimate y-ray dose lower than 100 Gy, while that at 450 nm was adequate for 100-1000 Gy. After micro gold particles were added the relationship between absorption and dose was no longer logarithmic. At dose lower than 500 Gy, the linearity was better at 352 nm,and the range could be extended to 500 Gy. Two linear ranges existed in 50-200 Gy and 200-500 Gy. At longer absorption wavelengths (426 and 450 nm), the linearity promoted with dose and the linear range extended with wavelength, indicating that longer wavelength (450 nm) was fitting for higher dose survey with KI/KIO₃ dosimeter added with micro gold particles. Among the wavelengths, 400 nm was suitable for dose less than 200 Gy, while 426 and 450 nm were fitting for that lower than 500 Gy; the linear range for the later could be extended to higher doses. The G values at 352 and 450 nm were maximum at 500 and 1000 Gy, respectively, and then decreased slightly. The response of KI(l.0 M)/KIO₃ dosimeter added with nano gold particles to γ photons was similar to original KI(l.0 M)/KIO₃ solution at 352 nm (>2.0); however, the absorbance variation was too slight to be used for measurement. At longer absorption wavelengths (400, 426 and 450 nm), the sensitivity lowered while the linear range increased, indicating that the KI(l.0 M)/KIO₃ dosimeter added with nano gold particles was suitable for dose measurement with longer wavelength (i. e, 450 nm). Among the wavelengths, 400 nm was suitable for measuring dose less than 200 Gy, while 426 and 450 nm were fitting for that lower than 500 Gy; the linear range of the latter could be extended to higher doses. Moreover, the G values at 352 and 450 nm increased with doses and reached the maximum respectively at 500 and 1000Gy.
    關聯: 台灣應用輻射與同位素雜誌/Taiwanese Journal of Applied Radiation and Isotopes
    5卷3期
    pp.707-714
    顯示於類別:[自然生物科技學系(自然療癒碩士班)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    添加奈米.pdf1606KbAdobe PDF365檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋