English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 1036734      線上人數 : 674
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/26810


    題名: Hubba: hub objects analyzer--a framework of interactome hubs identification for network biology
    作者: 金家豪;Chin, Chia-Hao;Lin, Chung-Yen;Wu, Hsin-Hung;Chen, Shu-Hwa;Ho, Chin-Wen;Ko, Ming-Tat
    貢獻者: 資訊工程學系
    日期: 2008-07
    上傳時間: 2019-03-06 15:19:11 (UTC+8)
    摘要: One major task in the post-genome era is to reconstruct proteomic and genomic interacting networks using high-throughput experiment data. To identify essential nodes/hubs in these interactomes is a way to decipher the critical keys inside biochemical pathways or complex networks. These essential nodes/hubs may serve as potential drug-targets for developing novel therapy of human diseases, such as cancer or infectious disease caused by emerging pathogens. Hub Objects Analyzer (Hubba) is a web-based service for exploring important nodes in an interactome network generated from specific small-or large-scale experimental methods based on graph theory. Two characteristic analysis algorithms, Maximum Neighborhood Component (MNC) and Density of Maximum Neighborhood Component (DMNC) are developed for exploring and identifying hubs/essential nodes from interactome networks. Users can submit their own interaction data in PSI format (Proteomics Standards Initiative, version 2.5 and 1.0), tab format and tab with weight values. User will get an email notification of the calculation complete in minutes or hours, depending on the size of submitted dataset. Hubba result includes a rank given by a composite index, a manifest graph of network to show the relationship amid these hubs, and links for retrieving output files. This proposed method (DMNC || MNC) can be applied to discover some unrecognized hubs from previous dataset. For example, most of the Hubba high-ranked hubs (80% in top 10 hub list, and >70% in top 40 hub list) from the yeast protein interactome data (Y₂H experiment) are reported as essential proteins. Since the analysis methods of Hubba are based on topology, it can also be used on other kinds of networks to explore the essential nodes, like networks in yeast, rat, mouse and human.
    關聯: Nucleic Acids Research
    vol. 36 sup. 2
    pp.438-443
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Hubba hub.pdf3815KbAdobe PDF548檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋