English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 914396      線上人數 : 1281
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/26812


    題名: A hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles
    作者: 金家豪;Chin, Chia-Hao;Chen, Shu-Hwa;Ho, Chin-Wen;Ko, Ming-Tat;Lin, Chung-Yen
    貢獻者: 資訊工程學系
    關鍵詞: Gene Ontology;Gene Expression Data;Functional Module;Module Component;Final Module
    日期: 2010
    上傳時間: 2019-03-06 15:19:34 (UTC+8)
    摘要: Background: Many research results show that the biological systems are composed of functional modules. Members in the same module usually have common functions. This is useful information to understand how biological systems work. Therefore, detecting functional modules is an important research topic in the post-genome era. One of functional module detecting methods is to find dense regions in Protein-Protein Interaction (PPI) networks. Most of current methods neglect confidence-scores of interactions, and pay little attention on using gene expression data to improve their results.
    Results: In this paper, we propose a novel hu b-attachment based method to detect functional modules from confidence-scored protein inte ractions and expression pr ofiles, and we name it HUNTER. Our method not only can extract functional modules from a weighted PPI network, but also use gene expression data as optional input to increase the quality of outcomes. Using HUNTER on yeast data, we found it can discover more novel components related with RNA polymerase complex than those existed methods from yeast interactome. And these new components show the close relationship with polymerase after functional analysis on Gene Ontology.
    Conclusion: A C++ implementation of our prediction method, dataset and supplementary material are available at http://hub.iis.sinica.edu.tw/Hunter/. Our proposed HUNTER method has been applied on yeast data, and the empirical results show that our method can accurately identify functional modules. Such useful application derived from our algorithm can reconstruct the biological machinery, identify undiscovered components and decipher common sub-modules inside these complexes like RNA polymerases I, II, III.
    關聯: BMC Bioinformatics
    vol. 11, sup. 1
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋