English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 914422      線上人數 : 1288
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/28495


    題名: 馬斯洛需求理論為基之網路評論產品定位分析機制
    其他題名: A Maslow's Hierarchy of Needs-based Networking Reviews Analysis Mechanism for Product Positioning
    作者: 陳宗義;巫啟豪;陳裕民;Chen, Tsung-Yi
    貢獻者: 資訊管理學系
    關鍵詞: 意見探勘;馬斯洛需求層級理論;產品定位;凝聚式階層分群;倒傳遞類神經網路;Opinion Mining;Maslow's Hierarchy of Needs;Product Positioning;Agglomerative Hierarchical Clustering;Back-Propagation Neural Network
    日期: 2015-12
    上傳時間: 2022-07-18 11:42:57 (UTC+8)
    摘要: 企業藉由行銷活動吸引新顧客與留住舊顧客,而產品定位分析則是企業擬定行銷策略的方法之一,以得知消費者對產品特徵之重視度,使企業能夠了解市場需求。現下,隨著各式網路媒體的蓬勃發展,消費者無不透過社群網站撰寫評論,分享其意見及心得,這些文章透露出消費者對於產品的重視度及功能需求。因此,本研究試圖以馬斯洛需求層級理論(Maslow's hierarchy of needs theory)為基,發展一個產品定位分析(Product positioning)機制,利用意見探勘(Opinion mining)、凝聚式階層分群(Agglomerative hierarchical clustering, AHC)及倒傳遞類神經網路(Back-propagation neural network, BPNN)等方法,分析消費者對產品之評論,探勘客群對特定產品所重視的產品特徵及各特徵對應至馬斯洛理論之層級,以建立一消費者的產品馬斯洛模型。此機制將可提供企業審視產品在目標市場之正確定位,並作為新產品開發改良的參考。
    Through marketing activities, enterprises can attract new customers and retain valuable customers. Product positioning analysis is one of the important steps to develop an effective marketing strategy, which aims to find out the degree of attention of consumers for particular features of products. Understanding product positioning in customer minds will enable enterprises to research and develop the novel products that can completely match consumer demands. Currently, with the prosperous development of various network social media platforms, on which consumers can share their reviews about products. These reviews often tend to reveal the degree of recognition and necessity for products from consumers. This study tries to design a product positioning analysis mechanism based on Maslow's hierarchy of needs theory, so that enterprises can understand the level of demand in target audiences psychological dimension in low-cost and automated way. This study designs a product's Maslow model that is used to analyze what product features TA care about, by means of machine learning methods including opinion mining, agglomerative hierarchical clustering (AHC), and back-propagation neural network (BPNN) to mining consumers' opinion on social media platforms and then map each features to the five levels of Maslow's hierarchy of needs. The mechanism will provide information of product positioning in target market to enterprises, so as to support refining product positioning strategies, improving features of products, and making decisions.
    關聯: 電子商務學報
    17卷4期
    pp.1-32
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋