English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 1037100      線上人數 : 967
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/29143


    題名: 嘉義中心崙地區深層崩塌即時預警模式系統建立之研究
    其他題名: The Establishment of an Early Warning System for Deep-Seated Landslide in the Zhonglun Area of Chiayi County
    作者: 劉嘉晃
    LIU, CHAI-HUAHG
    貢獻者: 科技學院永續綠色科技碩士學位學程
    洪耀明
    HONG, YAO-MING
    關鍵詞: 深層崩塌;地下水位;無限邊坡理論;線性水庫
    deep-seated landslide;groundwater level;infinite slope theory;linear reservoir
    日期: 2022
    上傳時間: 2022-09-01 16:13:51 (UTC+8)
    摘要:   由於氣候變遷導致極端氣候,過多降雨導致地下水位上升,進而誘發崩塌災害,若能及早預知地下水是否達到崩塌臨界值,應能發揮早期預警機制,減少生命財產損失。  本研究發展深層崩塌之地下水位預測模式,首先建立無限邊坡理論與試驗驗證,推得深層崩塌臨界地下水位及位置,再採用線性水庫,以降雨量及地下水位觀測資料,預估下一小時地下水位。  並以嘉義縣中心崙崩塌地,收集地文、降雨及地下水位,先以無限邊坡理論,計算理論臨界地下水位,再以線性水庫模式,找出降雨與地下水位關係較佳之監測站,測試後於選擇模擬較佳之二處測站,進行線性水庫及類神經網路模式比較,將可提供主管機關做為早期大規模崩塌預警之依據。
      Due to extreme weather caused by climate change, excessive rainfall rises the groundwater level, and induces landslide. If the prediction of groundwater level can be realized, an early warning mechanism may reduce the loss of life and property.  This research develops a groundwater level prediction model for deep-seated landslide. First, the infinite slope theory and experimental verification are established, and the critical groundwater level and location of deep-seated landslide are deduced. Then, a linear reservoir model is used to predict the groundwater level in the next hour based on the observation data of rainfall and groundwater level.   The geology, rainfall and groundwater level are collected from the landslide in the Chiayi County. First, the infinite slope theory is used to calculate the theoretical critical groundwater level, and then the linear reservoir model is used to find out the monitoring station with a better relationship between rainfall and groundwater level. After selecting the two stations with the best simulation results, a comparison of the linear reservoir and the neural network model will be carried out, which will provide the competent authority as a basis for early warning of large-scale collapse.
    顯示於類別:[永續綠色科技碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    110NHU00159027-001.pdf5915KbAdobe PDF76檢視/開啟
    index.html0KbHTML311檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋