English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 2123238      線上人數 : 99
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/29614


    題名: Addressing the advantages of using ensemble probabilistic models in Estimation of Distribution Algorithms for scheduling problems
    作者: 陳萌智;Chen, Min-Chih
    貢獻者: 資訊管理學系
    關鍵詞: Estimation of Distribution Algorithms;Single machine scheduling problem;Permutation flowshop scheduling problem;Self-Guided Genetic Algorithm
    日期: 2013-01
    上傳時間: 2023-09-01 10:40:33 (UTC+8)
    摘要: Estimation of Distribution Algorithms (EDAs) have recently been recognized as a prominent alternative to traditional evolutionary algorithms due to their increasing popularity. The core of EDAs is a probabilistic model which directly impacts performance of the algorithm. Previous EDAs have used a univariate, bi-variate, or multi-variable probabilistic model each time. However, application of only one probabilistic model may not represent the parental distribution well. This paper advocates the importance of using ensemble probabilistic models in EDAs. We combine the univariate probabilistic model with the bi-variate probabilistic model which learns different population characteristics. To explain how to employ the two probabilistic models, we proposed the Ensemble Self-Guided Genetic Algorithm (eSGGA). The extensive computation results on two NP-hard scheduling problems indicate the advantages of adopting two probabilistic models. Most important of all, eSGGA can avoid the computation effort overhead when compared with other EDAs employing two models. As a result, this paper might point out a next generation approach for EDAs.
    關聯: International Journal of Production Economics
    vol. 141, no. 1
    pp.24-33
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Addressing the advantages.pdf347KbAdobe PDF93859檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋