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Abstract: This study proposes the quantile method under the Generalized Error 
Distribution (GED) VaR forecasts with non-normality assumption, fitting the returns 
data with the GED. This application is more efficient and flexible not only for 
accommodating both normality and non-normality situations in one model, but also 
for retaining the easy usages characteristic of the variance-covariance. In the light of 
results of the failure rates and Kupiec test, the empirical result shows that the 
proposed method can considerably enhance the estimation accuracy of Value-at-Risk. 
Keywords：Value at Risk, Variance-covariance, Quantile 

 

 

1. Introduction 
Value-at-Risk (VaR) has recently become the most important benchmark for 

determining risks in portfolios. According to Jorin (2000), VaR summarizes the 
expected maximum loss over a target horizon with a specified level of confidence. 
Importantly, VaR can aggregate all risks in a portfolio into a single number. Three 
major approaches, namely historical simulation, variance-covariance, and Monte 
Carlo simulation, have been widely adopted in practice to estimate VaR precisely. The 
variance-covariance method derives the VaR exactly on the basis of the distributional 
assumptions. Hence, the variance-covariance brings two major advantages for VaR 
estimation. First, if the normal distribution is assumed, then an analytic solution can 
be obtained for VaR standards with a holding period of greater than one day. Second, 
the model parameters are generally easy to determine in the normal distribution. The 
variance-covariance approach is also computationally fast, even with a very large 
number of assets, since it replaces each position by its linear exposure.  

Although the superiority of variance-covariance over its parametric counterparts 
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for the above reasons, it still has a major limitation that must be recognized and 
overcome. The conditional distribution of short horizon financial assets returns is 
leptokurtic, with tails that are fatter than those of normal distribution. This 
phenomenon has been extensively investigated by Koedijk et al. (1992), Pictet et al. 
(1996) and Huisman et al. (1998). In this situation, a model based on a normal 
distribution would underestimate the proportion of outliers, thus underestimating the 
true VaR.  

To maintain the privileged merits of variance-covariance, this investigation 
proposes the quantile method under the Generalized Error Distribution (GED) VaR 
forecasts with non-normality assumption, fitting the returns data with the GED. This 
application is more efficient and flexible not only for accommodating both normality 
and non-normality situations in one model, but also for capturing various fat-tailed 
distributions other than the variance-covariance. This feature of the proposed 
application is particularly helpful, since it enables extrapolation of the optimal 
tail-fatness by real data. Therefore, the optimal GED model can be selected to fit 
returns data, and capture time-varying fatness and volatilities. 

The remainder of the paper is organized as follows. Section 2 describes the 
research method. Section 3 then analyzes the empirical evidence on the forecasting 
accuracy of our proposed method. The performance of the proposed method is 
compared with that of the variance-covariance method by implementing the Kupiec 
(1995) test and failure ratios on five stock indices. Analytical results demonstrate that 
the proposed method is much more stable than the variance-covariance. Conclusions 
are finally drawn in Section 4.  
 

2. Research Method 
Successfully implementing VaR depends strongly on the ability to accurately 

estimate the conditional distribution of asset returns. This study considers two 
possible distributions. The first is the normal distribution. The most important reason 
underlying this choice is that VaR calculations almost always assume a normal 
distribution, mainly because of its practical advantages particularly for models with 
cointegration (Johansen, 1988).  

The second distribution reviewed in this study is the GED. Despite the practical 
advantages of normal distribution, its assumptions are rarely fulfilled in daily 
financial data. This investigation employs the GED model, which is frequently 
employed to modeling financial assets returns with non-normal distribution in 
literature (e.g., Wei (1998), Koutmos (1999)). Additionally, data in this study indicate 
that the real distribution was more thick-tailed than the normal distribution in all cases 
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(see Table 1). This application is more efficient and flexible not only for 
accommodating both normality and non-normality situations in one model, but also 
for capturing various non-normal fat-tailed distributions and, thus, seems to 
correspond more closely to reality. 

The following subsections discuss in detail the variance-covariance approach, 
and the proposed estimation method. 
 

2.1 The Variance-Covariance and Quantile Method under GED 

Variance-covariance approaches assume that the market returns have a normal 
distribution, as follows: 

 

    ( )ασμ ZVaR ttt +=                                                (3) 

 

In the above, ( )αZ  denotes the %α  quantile of the standard normal distribution, 

and tμ  and 2
tσ denote the mean and variance, respectively. The VaR at time t is 

usually determined with the forecasts of tμ  and 2
tσ . 

Conventionally, a portfolio’s VaR is calculated by the variance-covariance 
approach assuming of conditional normal returns. However, log returns are frequently 
found not to be normally distributed (see Boudoukh et al.(1997) and Hull and 
White(1998)). To preserve the feature of convenient manipulation of the 
variance-covariance, this study uses the quantile method under GED VaR forecasts. 

The probability density function of the GED is given by: 

 

σω

ωσ

)1(2
2
1exp

)( )11( v

v
Rf v

vR

Γ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

= +
 ,  0＜v<∞                            (4) 

 

Where R denotes the rate of return; σ  denotes the standard deviation; ( )1−Γ v  

denotes a standard gamma function, and ( )[ ] 2
12 )3()1(2 vvv ΓΓ≡ −ω , where v denotes 
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a tail-fatness parameter. When v=2, R represents a standard normal distribution. The 

distribution of R has thin tails when v＞2, and fat tails when for v＜2 (e.g., R has a 

double exponential distribution when v=1). A smaller (larger) v is leads to a fatter 

(thinner) tail.  

Nevertheless, using GED for estimation involves determining the value of v in 
advance, which in turn shapes the distribution of returns. Guermat and Harris (2002) 
fitted returns data only by several designated values of v. In contrast, this study  
suggests relying on kurtosis as guiding light to search out the optimal value of v. With 
the distribution assumption of GED, the kurtosis (k) and v can be equated by: 
 

( ) ( )
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vvk
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=                                                  (5) 

 
In other words, the kurtosis (k) of accumulated returns data collected is 

calculated, and then plugged into Eq. (5) to backward solve the v. Moreover, the 
time-varying values of v may also be calculated through moving windows. Therefore, 
the proposed approach not only considers the situation of time-varying returns 
distributions, but also determines the conditional distributions.  

            

2.2 Model Evaluation 
The accuracy performance of proposed models was measured by the widely used 

Kupiec (1995) test and failure ratios. In the performance comparison of different 
models, this study uses one day as the specific period for the assessment of VaR at 
99%, 95%, and 90% levels of confidence. The principles of using these tests for 
evaluating the accuracy of proposed models are then explained. The use of the Kupiec 
test method is described as follows: 
2.2.1 Kupiec test method 

The unconditional coverage of the Kupiec(1995) test is a PFLR , shown as 
equation (6), based on the binomial distribution, and is used to determine if the failure 
ratio is compatible with the expected level of confidence. The sample size is T, and 

the frequency of failure is the binomial probability of x, xxT cc
x
T −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)1( , under 

which the assessed value of risk must have an unconditional coverage ratio c equal to 
the expected level of 0c . In other words, the null hypothesis 00 : ccH = , and the 
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PFLR  is the distribution of χ2 with degrees of freedom equal to 1.  
 

( )[ ] ( )( ) ( )[ ]xxTxxT
PF TxTxccLR //1ln21ln2 00

−−
−+−−=                            (6) 

 

2.2.2 Binary Loss Function (BLF) 
This study also adopts the BLF as an indicator for the accuracy of the models. 

The BLF is based on the concept of failure ratios, whereby an actual loss greater than 
the VaR value is considered as failure. For each failure, a constant of 1 is assigned; 
otherwise it is zero. If a VaR model truly provides the level of coverage defined by its 
confidence level, then the average BLF over the full sample equals 0.05 for the 95th 
percentile VaR, and 0.01 for the 99th percentile VaR. Therefore, a BLF value closer to 
the confidence level from the model indicates a higher accuracy is.  
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3. Empirical Study 

3.1 Sources and data analysis   
The model was tested by the daily data of five international indices (S&P 500, 

FTSE 100, DAX, Nikkei 225, and TAIEX) from January 1, 1990 to December 31, 
2006. Continuously compounded returns were then calculated as the first difference of 

the natural logarithm of each series, )ln(
1−

=
t

t
t P

PR , where Rt denotes the return index 

value for date t. 
Table 1 shows test results from the assumption that each return index series is 

normally distributed. The statistical values in Table 1 show that the average daily 
returns are about 0. This result is consistent with the results of previous studies about 
the long-term average daily return rate of stock market. Table 1 also shows the 
extreme values of the entire sample pool; that is, the mean plus (minus) three times 
the standard deviation, and at the 1% and 99% percentile. The corresponding critical 
values at 1% and 99% percentile, calculated by adding (subtracting) the mean with 
three times the standard deviation, indicate that significant deviation was found 
between the lowest (highest) extreme values and the mean plus (minus) three times 
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the standard deviation. A similar phenomenon occurred between the lowest (highest) 
extreme values and the critical value at 1% (99%) percentile. This finding implies that 
the tail of the actual distribution would be thicker than that of the normal distribution. 
Additionally, the skewness and kurtosis coefficients are different from those under 
normal distribution. The findings from the above measurement and verification 
demonstrate that the returns on stock markets are not normally distributed, and are 
leptokurtic. The assumption of normal distribution cannot fully reflect the fat tail in a 
leptokurtic curve of distribution.  
3.2 The empirical findings and analysis 
3.2.1 The results of Kupiec tests  

With the confidence levels of 99%, 95%, and 90%, the proposed method is 
evaluated against the variance-covariance on the forecasting capability of one-day 
VaRs of five international indices. Tables 2 reports the results, evaluated by the 
Kupiec (1995) test, of whether various proposed models can provide precise portfolio 
VaR estimates.  

The Kupiec test of variance-covariance was higher than the nominal significance 
level of 1% at the 99% VaR confidence level for all four indices. Only for the Nikkei 
225 series is not rejected. The quantile method under GED VaR forecasts was found 
to perform significantly better than the variance-covariance at the 99% VaR 
confidence level. 

At the 95% VaR confidence level, the null hypothesis of variance-covariance was 
rejected at the 1% level for the S&P 500 and at the 5% level for the TAIEX. The null 
hypothesis of the Kupiec test was rejected only for S&P 500 series in the proposed 
model, and then only at the 1% level. 

Table 2 reports the results for the 90% VaR confidence level. The VaR estimates 
produced by the variance-covariance strongly rejected the null hypothesis at the 1% 
level for any indices, as in Table 1. Using the quantile method under GED VaR 
forecasts improved the unconditional coverage in all cases. The null hypothesis of the 
quantile method under GED VaR forecasts was rejected for only two indices, and only 
at the 5% level. 

The results in Table 2 demonstrate that the variance-covariance cannot provide 
promisingly accurate VaR estimates for the five international indices. Therefore, the 
overall test results of the variance-covariance show that this method cannot promise 
its stable forecasting capability on accuracy. Conversely, the quantile method under 
GED VaR forecasts produced very accurate forecasts in nearly all cases.  

 

3.2.2 The results of BLF tests 



 
 

6

Since the BLF concentrates on the concept of failure ratio, it can also be used as 
an indicator for the accuracy of estimative models. Therefore, the closer the BLF 
value closer to the specified confidence level shows a more accurate model. Table 3 
indicates that most of the BLF values of the proposed models were closer than those 
of the variance-covariance to the specified significance levels. The excellent 
performance of the proposed approaches on the failure ratio tests also demonstrates 
their strong capability of capturing the tail behavior of returns. Therefore, the quantile 
method under GED VaR is not only easy to use, but also more accurate than the 
variance-covariance. 

 
 

4. Conclusion 
Despite its ability to accurately estimate VaR, variance-covariance still must deal 

with inherent problems resulting from using the normal distribution. The resulting 
negative impact on the estimation accuracy of the portfolio VaR can make the 
variance-covariance unusable. Additionally, the returns of assets pricing follow a 
GED more closely than a normal distribution. To solve these problems, this study 
suggests using the quantile method under GED VaR forecasts. The proposed method 
has the following two major advantages: (1) the GED is more efficient and flexible in 
accommodating various fat-tailed distributions and (2) the extended applications of 
GED are easy to implement, and still enable convenient manipulation of the 
variance-covariance. 

Most interestingly, the capturing capability of the proposed method is derived 
from the dynamic availability of tail-fatness obtained by calculating the kurtosis. 
Results of this study demonstrate that the proposed method indeed has a better 
forecasting accuracy than the variance-covariance for portfolio VaR. 

 
 

References 
Alexander, C.O., and C.T. Leigh (1997). On the Covariance Matrices Used in Value at 
Risk Models. Journal of Derivatives, 4(3), 50-62. 

Boudoukh, J., M. Richardson and R. Whilelaw (1998). The Best of Both Worlds: A 
Hybrid Approach to Calculating Value at Risk. Risk, 11, 64-67. 

François, L. and B. Solnik (2001). Extreme Correlation of International Equity 
Markets. The Journal of Finance 56(2), 649-676. 



 
 

7

Guermat, C. and R.D.F. Harris (2002). Robust Conditional Variance Estimation and 
Value-at-Risk. The Journal of Risk, 4(2), 25-41. 

Harris, R.D. F. and J. Shen (2003). Robust Estimation of The Optimal Hedge Ratio. 
The Journal of Futures Markets, 23(8), 799-816. 

Hendricks, D. (1996). Evaluation of Value-at-Risk Models Using Historical Data. 
Economic Policy Review 2, 39-69. 

Hull, J. and A. White (1998). Incorporating Volatility Updating into the Historical 
Simulation Method for Value-at-Risk. Journal of Risk, 1, 5-19. 

Huisman, R., K. G. Koedijk, and R. A. J. Pownall (1998). VaR-x: Fat Tails in 
Financial Risk Management. Journal of Risk, 1(1), 47-61. 

Jorion, P. (2000). Value at Risk, McGraw Hill. 

J.P. Morgan (1996). RiskMetrics Technical Document, 4th edition, New York: Morgan 
Guaranty. 

Koedijk, K.G., P. A. Stork, and C. G. de Vries (1992). Differences Between Foreign 
Exchange Rate Regimes: The View from Tails. Journal of International Money and 
Finance, 11(5), 462-473. 

Koutmos, G. (1999). Asymmetric Price and Volatility Adjustments in Emerging Asian 
Stock Markets. Journal of Business Finance and Accounting, 26(1), 83-101. 

Kupiec, P. (1995). Technique for Verifying the Accuracy of Risk Measurement 
Models. Journal of Derivatives, 3, 73-84. 
Nelson, D. and D. Foster (1994). Asymptotic Filtering Theory for Univariate ARCH 
Models. Econometrica, 62(1), 1-41. 

Pictet, O., M. Dacorogan, and U. Muller (1996). Hill, Bootstrap and Jackknife 
Estimators for Heavy Tails. Working Paper, Olsen and Associates, Research Institute 
for Applied Economics. 

Poon, S-H, M. Rockinger, and J. Tawn (2004). Extreme Value Dependence in 
Financial Markets: Diagnostics, Models, and Financial Implications. The Review of 
Financial Studies, 17(2), 581-610. 

Vlaar, Peter J.G. (2000). Value at Risk Models for Dutch Bond Portfolios. Journal of 
Banking and Finance, 24(7), 1131-1154. 

Wei, S. X. (1998). A Censored-GARCH Model of ASSET Returns with Price Limits. 
Center for Operation Research and Econometrics Discussion Paper 9815. 
Zangari, P. (1996). RiskMetrics Technical Document, 4th edition, New York: Morgan 
Guaranty. 



 
 

8

 
 

TABLE 1  
The Descriptive Statistics of Returns of the Five Stock Indices 

  S&P 500 FTSE 100 DAX Nikkei 225 TAIEX 

Mean (A) 0.00032 0.00022 0.00026 -0.00019 -0.00005 

Standard Deviation (B) 0.00999 0.01041 0.01474 0.01479 0.01799 

Kurtosis 3.98931 7.52688 11.26111 3.07969 2.46542 

Skewness -0.08591 0.04776 -0.27212 0.15936 -0.20269 

Lowest -0.07113 -0.09160 -0.15803 -0.07234 -0.07045 

A-3B -0.02965 -0.03101 -0.04397 -0.04455 -0.05401 

1% quartile -0.02625 -0.02947 -0.04315 -0.03873 -0.05943 

99% quartile 0.02760 0.02696 0.03901 0.03751 0.05169 

A+3B 0.03029 0.03145 0.04449 0.04417 0.05391 

Highest  0.05574 0.11554 0.14810 0.12430 0.06577 

Sum 4292 4280 4277 4181 4582 

 
 

TABLE 2  
The Kupiec Tests Results of Competing Models  

S&P 500 C=0.01 C=0.05 C=0.1 
ND 6.82** 7.06** 20.76** 

GED 0.09 7.49** 1.19 
FTSE 100 C=0.01 C=0.05 C=0.1 

ND 29.02** 2.07 21.01** 
GED 0.27 1.46 1.74 

DAX C=0.01 C=0.05 C=0.1 
ND 27.42** 0.25 10.43** 

GED 0.27 1.83 4.18* 
Nikkei 225 C=0.01 C=0.05 C=0.1 

ND 2.62 1.33 7.62** 
GED 0.66 1.51 0.06 

TAIEX C=0.01 C=0.05 C=0.1 
ND 13.22** 5.08* 39.73** 

GED 1.21 3.58 5.97* 
Note: C=0.01 stands for the confident level of 99%. C=0.05 stands for the confident level of 95%. C=0.1 stands for 

the confident level of 90%. ND stands for Normal distribution. GED stands for Generalized Error Distribution. *, ** 

denote significance at the 5%, and 1% levels. 
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TABLE 3 
The Failure Ratios of Competing Models 

S&P 500 C=0.01 C=0.05 C=0.1 
 (Theoretic NF: 38） (Theoretic NF: 190） (Theoretic NF: 379） 

 Total NF FR Total NF FR Total NF FR 

ND 55 0.015 155 0.041 295 0.078 
GED 36 0.009 154 0.041 348 0.092 

FTSE 100 C=0.01 C=0.05 C=0.1 
 (Theoretic NF: 38） (Theoretic NF: 189） (Theoretic NF: 378） 

 Total NF FR Total NF FR Total NF FR 

ND 73 0.019 170 0.045 289 0.076 
GED 41 0.011 173 0.046 343 0.091 

DAX C=0.01 C=0.05 C=0.1 
 (Theoretic NF: 38） (Theoretic NF: 189） (Theoretic NF: 378） 

 Total NF FR Total NF FR Total NF FR 

ND 74 0.019 181 0.048 312 0.082 
GED 41 0.011 171 0.045 364 0.096 

Nikkei 225 C=0.01 C=0.05 C=0.1 
 (Theoretic NF: 37） (Theoretic NF: 184） (Theoretic NF: 368） 

 Total NF FR Total NF FR Total NF FR 

ND 47 0.013 169 0.046 317 0.086 
GED 32 0.009 168 0.046 353 0.096 

TAIEX C=0.01 C=0.05 C=0.1 
 (Theoretic NF: 41） (Theoretic NF: 204） (Theoretic NF: 408） 

 Total NF FR Total NF FR Total NF FR 

ND 66 0.016 172 0.042 288 0.071 
GED 48 0.012 176 0.043 339 0.083 

Note: NF denotes number of failure. FR denotes failure ratio 
 
 
 
 


