

南 華 大 學

資訊管理學系

碩士論文

運 用 智 慧 卡 建 立 多 伺 服 器 認 證 的 通 訊 協 定

A novel multi-server authentication protocol

研 究 生：黃純慧 學生

指導教授：周志賢 博士

中華民國九十八年六月

v

運用智慧卡建立多伺服器認證的通訊協定

學生：黃純慧 指導教授：周志賢 博士
 ×××××
 ×××××

南 華 大 學 資訊管理學系碩士班

摘 要

最近，Tsai 和 Hsiang 等人分別提出運用智慧卡建立多伺服器認證的

通訊協定。他們宣稱，他們的通訊協定是安全並且可阻擋各種攻擊。然

而，我們發現他們的通訊協定中存在著安全漏洞。在本文中，我們先說

明這兩個機制中的安全漏洞，然後提出新的通訊協定。經過安全性分析

後，這個新機制是運用智慧卡建立多伺服器認證的通訊協定中最安全且

有效率的。

關鍵詞： 多伺服器，密碼認證協定，智慧卡，密碼變更，金鑰協議

vi

A novel multi-server authentication protocol

Student：Chun-Hui Huang Advisors：Dr. Jue-Sam Chou

 Dr. －－－－－－ .

Department of Information Management
The M.I.M. Program
Nan-Hua University

ABSTRACT

Recently, Tsai and Hsiang et al. each proposed a multi-server

authentication protocol. They claimed that their protocols are secure and can

withstand various attacks. However, after analysis, we found that some

security loopholes existing in their protocols. In this paper, we will first show

the security loopholes in their protocols then present our new scheme. After

security analysis, we conclude that our scheme is the most secure and

efficient one regarding secure multi-server environments among all of the

proposed protocols.

Keywords: multi-server, password authentication protocol, smart card,

password change, key agreement

vii

目 錄

書名頁 ... i

論文口試合格証明 .. ii

著作財產權同意書 ... iii

論文指導教授推荐書 ... iv

中文摘要 .. v

英文摘要 ... vi

目錄 .. vii

表目錄 ... ix

圖目錄 .. x

Chapter 1 Introduction ... 1

Chapter 2 Review of Tsai’s and Hsiang-Shih’s protocols... 3

2.1 Review of Tsai’s protocol... 4

2.2 Review of Hsiang-Shih’s protocol .. 9

Chapter 3 Security loopholes in Tsai’s and Hsiang-Shih’s protocols 14

3.1 Server spoofing attack by an insider server on Tsai’s protocol 14

3.2 Attack on Hsiang-Shih’s protocol... 18

Chapter 4 Our protocol ... 21

Chapter 5 Security analysis of our protocol .. 31

5.1 Mutual authentication ... 31

5.2 Session key agreement ... 33

viii

5.3 Perfect forward and backward secrecy ... 33

5.4 Changing password freely and securely .. 34

5.5 Preventing the stolen-verifier attack.. 34

5.6 Preventing the insider-server spoofing attack... 34

5.7 Preventing insider-user impersonating attack .. 36

5.8 Preventing off-line and on-line password guessing attack............................... 37

5.9 Preventing replay attack ... 38

5.10 Preventing parallel session (Man-in-the-Middle) attack 38

5.11 Preventing smart-card-lost attack.. 40

Chapter 6 Discussion ... 43

6.1 Single registration.. 43

6.2 Low communication cost .. 43

6.3 Increasing servers freely/ Low card-issue cost.. 44

6.4 Why we don’t adopt dynamic ID ... 44

6.5 RC-off-line authentication .. 47

6.6 Comparisons .. 47

Chapter 7 Conclusion .. 49

References... 50

Appendix A ... 53

ix

表 目 錄

Tab. 1. The comparison of our scheme and other proposed schemes.................................. 48

x

圖 目 錄

Fig. 1. Registration phase and login phase of Tsai’s protocol ... 4

Fig. 2. Authentication of server and RC phase of Tsai’s protocol ... 6

Fig. 3. Authentication of server and user phase of Tsai’s protocol.. 8

Fig. 4. Hsiang-Shih’s protocol... 10

Fig. 5. Server spoofing attack by an insider server on Tsai’s protocol for scenario (A)

the secret key is not generated. .. 15

Fig. 6. Server spoofing attack by an insider server on Tsai’s protocol for scenario (B)

the secret key has been generated. ... 17

Fig. 7. Preparation phase and registration phase ... 22

Fig. 8. Scenario (A): the first time execution (of login for authentication and session

key agreement phase.. 23

Fig. 9. Scenario (B): not the first time execution (of login for authentication and

session key agreement phase) ... 27

Fig. 10. Scenario (C): Login for authentication and password change phase 29

Fig. 11. Authenticity relationship .. 32

Fig. 12. Parallel session attack .. 39

1

Chapter 1 Introduction

For the possible extension of a communication network, a two-party password

authentication protocol for a client-server architecture might not be sufficient for

efficiently accommodating various users requirements. Due to this observation, several

multi-server protocols were proposed [1-15] attempting to resolve this problem.

In 2003, Li et al. [4] proposed a multi-server protocol based on ElGamal digital

signature and geometric transformations on an Euclidean plane. Unfortunately, their

protocol had been broken by Cao and Zhong [12]. In 2004 and 2005, Tsaur et al. [9, 10]

proposed two multi-server schemes. However, both of their schemes are based on

Lagrange interpolating polynomial which is computationally intensive as indicated in [10].

In 2006 and 2007, Cao et al. [15] and Hu et al. [7] each proposed an authentication scheme

for a multi-server environment, respectively. Both of their schemes assume that all servers

are trustworthy. Nevertheless, this assumption is not always true, as stated in [6]. In 2008,

Lee et al. [5] proposed an authenticated key agreement scheme for multi-server using

mobile equipment. But their scheme can not add a server freely since when a server is

added, all users who want to login to the new added server have to re-register at the

registration center for getting a new smart card. This increases the registration center’s

card-issue overhead. Also, in 2008, Tsai [6] proposed an efficient multi-server

authentication scheme. He claims that his protocol can withstand seven known attacks. Yet,

after our analysis, we found that it is vulnerable to the server spoofing attack. Recently, in

2

2009, Liao et al. [14] proposed a secure dynamic ID scheme for multi-server environments.

They claim that their protocol is secure. However, Hsiang and Shih [3] found their scheme

suffers from both the server spoofing attack and the insider attack (We also illustrated the

same weakness of Liao et al.’s scheme in [13]). Hence, they proposed an improvement on

Liao et al.’s protocol to get rid of the found weakness. Yet, we found that Hsiang et al.’s

improvement is still insecure. It is vulnerable to the insider attack. In this paper, we will

first show the attacks on [6] and [3] respectively. After that, we show our scheme and then

examine its security.

The remainder of this paper is organized as follows: In Chapter 2, we review both Tsai’s

and Hsiang-Shih’s protocols. In Chapter 3, we demonstrate the vulnerabilities existing in

their schemes, respectively. Then, we propose a novel protocol in Chapter 4 and analyze its

security in Chapter 5. The discussions and comparisons are made in Chapter 6. Finally, a

conclusion is given in Chapter 7.

3

Chapter 2 Review of Tsai’s and Hsiang-Shih’s protocols

In this chapter, we will review Tsai’s protocol in Section 2.1 and Hsiang-Shih’s protocol

in Section 2.2. Before that, the notations used throughout this paper are first defined as

follows.

 RC : the registration center

 Uu : a legal user u

 Un : a legal malicious user n

 Sj : a legal server j

 E(P) : an attacker E who masquerades as a peer P.

 SIDj : the identity of Sj

 IDu : the identity of Uu

 PWu : the password of Uu

 x,y,r : RC’s secret keys

 Flag : a word string which is set to ‘the first time login’, ‘not the first time login’, ‘for

password change’ or ‘accept’.

 H(.) : a collision-resistant one-way hash function

 (a,b) : a string denotes that string a is concatenated with string b.

 ♁ : a bitwise exclusive or operator

 g : a primitive element in a Galois field GF(p), where p is a large prime number.

 => : a secure channel

4

 → : a common channel

2.1 Review of Tsai’s protocol

Tsai’s protocol consists of four phases. They are: (1)registration phase, (2)login

phase, (3)authentication of server and RC phase, and (4)authentication of server and

user phase. It assumes that there are s servers existing in the system. At beginning, RC

computes and sends H(SIDj,y) to each server Sj for j = 1 to s, with Sj keeping it secret,

via a secure channel. We describe them as follows.

(1) Registration phase

In this phase (as shown in Fig. 1), Uu performs the following steps for obtaining

Registration phase

 Uu RC

1. chooses IDu, PWu
calculates H(PWu)

IDu, H(PWu)

2. calculates B=H(IDu, x)♁H(PWu)

issues a smart card containing IDu and B

smart card

Login phase

 Uu Sj

1. generates a nonce Nc
C1 =(B♁H(PWu))♁Nc

2. IDu, C1

Fig. 1. Registration phase and login phase of Tsai’s protocol

5

a smart card from RC.

1. Uu freely chooses his IDu and PWu, and calculates H(PWu). He then sends {IDu,

H(PWu)} to RC through a secure channel.

2. RC calculates B=H(IDu, x)♁H(PWu) and issues Uu a smart card containing IDu

and B through a secure channel.

(2) Login phase

In this phase (also shown in Figure 1), when Uu wants to login to Sj, he inserts

his smart card and performs the following steps.

1. Uu keys his IDu and PWu and generates a random nonce Nc. He then computes

C1=(B♁H(PWu))♁Nc = H(IDu, x)♁Nc.

2. Uu sends {IDu, C1} to Sj.

(3) Authentication of server and RC phase

In this phase (as shown in Fig. 2), after receiving message {IDu, C1} from Uu, Sj

runs the following steps to let himself be authenticated by RC, verify Uu’s

legitimacy, and negotiate the session key with Uu. Here, let the secret key shared

between Sj and RC be H(H(SIDj, y), Ns+1, NRC +2), where Ns and NRC are Sj’s and

RC’s randomly chosen nonces respectively. To increase the protocol’s efficiency,

this phase is divided into two scenarios: (A) the secret key is not generated, and (B)

the secret key has been generated. We describe them below.

(A) the secret key is not generated

1. Sj generates a random nonce Ns and computes C2 = H(SIDj, y)♁Ns.

2. Sj sends {IDu, SIDj, C1, C2} to RC.

6

Authentication of server and RC phase
(A) the secret key is not generated

 Sj RC

1. generates a nonce Ns

computes C2 = H(SIDj, y)♁Ns.

2. IDu, SIDj, C1, C2

3.derives Ns' =H(SIDj, y)♁C2

generates a nonce NRC

computes C3 = NRC♁H(SIDj, y)

4. C3

5. retrieves

N 'RC=C3♁H(SIDj, y)
calculates
C4 = H(H(SIDj, y), Ns)

♁N 'RC

6. C4

7. computes

C '4 =H(H(SIDj, y), Ns')♁NRC

checks C '4 =? C4

retrieves N 'c = H(IDu, x)♁C1

computes
C5 = H(H(SIDj, y), Ns', NRC),
C6 =H(H(SIDj,y),Ns'+1,NRC +2)

♁H(H(IDu, x), N 'c)

8. C5, C6

9. calculates

 C '5=H(H(SIDj, y), Ns,N 'RC)
compares C '5=?C5

(B) the secret key has been generated

 Sj RC

1. IDu, SIDj, C1

2. derives N 'c=H(IDu, x)♁C1

computes
C6=H(H(SIDj, y), Ns'+1, NRC+2)

♁H(H(IDu, x), N 'c)

3. C6

Fig. 2. Authentication of server and RC phase of Tsai’s protocol

7

3. RC derives Ns'=H(SIDj, y)♁C2. He then generates a random nonce NRC and

computes C3 = NRC♁H(SIDj, y).

4. RC sends {C3} to Sj.

5. After receiving the message from RC, Sj retrieves N 'RC = C3♁H(SIDj, y) and

calculates C4 = H(H(SIDj, y), Ns)♁N 'RC.

6. Sj sends {C4} to RC.

7. RC computes C '4 = H(H(SIDj, y), Ns')♁NRC and checks to see if C '4 is equal

to the received C4. If so, Sj is authentic. He then retrieves N 'c =H(IDu, x)♁

C1 and computes C5 = H(H(SIDj, y), Ns', NRC), C6 = H(H(SIDj, y), Ns'+1, NRC

+2)♁H(H(IDu, x), N 'c).

8. RC sends {C5, C6} to Sj.

9. After receiving the message from RC, Sj calculates C '5 = H(H(SIDj, y), Ns,

N 'RC) and compares it with the received C5. If they are equal, RC is

authentic. Both Sj and RC will store the common secret key

AuthS-RC=H(H(SIDj, y), Ns+1, N 'RC +2) in the verifier table for the next

execution of this phase.

(B) the secret key has been generated

1. Sj sends {IDu, SIDj, C1} to RC.

2. RC derives N 'c=H(IDu, x)♁C1 and uses his AuthS-RC to compute C6 =

H(H(SIDj, y), Ns'+1, NRC +2)♁H(H(IDu, x), N 'c).

3. RC sends {C6} to Sj.

(4) Authentication of server and user phase

8

After the authentication of server and RC phase, Sj and Uu together perform the

following steps for mutual authentication and establishing a common session key

(as shown in Fig. 3).

Authentication of server and user phase

 Uu Sj

1. generates a nonce NSU

computes
C7 = C6♁H(H(SIDj, y), Ns+1,N 'RC +2)

=H(H(IDu,x), N 'c)
calculates
C8 = C1♁C7, V2 = C7♁NSU

C9= H(C7, NSU)♁C8

2. V2 , C9

3. computes
C '7 = H(H(IDu, x), Nc)

retrieves
N 'SU= C '7♁V2
calculates
C '8 = C '7♁C1

C '9 =H(C '7, N 'SU)♁C '8

checks C '9 =? C9 ,

calculates
C10 = H(C '7, C '8, N 'SU)

4. C10

5.session key
SK= H(C '7 +1,C '8+2, N 'SU +3)

5. computes C '10 = H(C7, C8, NSU)
compares C '10 =? C10
session key SK= H(C7 +1, C8+2, NSU +3)

Fig. 3. Authentication of server and user phase of Tsai’s protocol

1. Sj generates a random nonce NSU and uses his AuthS-RC to compute C7 = C6♁

H(H(SIDj, y), Ns+1, N 'RC +2)=H(H(IDu, x), N 'c). He then calculates C8 = C1♁C7,

V2 = C7♁NSU, and C9 = H(C7, NSU)♁C8.

9

2. Sj sends {V2 , C9} to Uu.

3. After receiving the message, Uu computes C '7 = H(H(IDu, x), Nc), retrieves

N 'SU = C '7♁V2, and calculates C '8 = C '7♁C1, C '9 = H(C '7, N 'SU)♁C '8. He then

checks to see if the newly computed C '9 is equal to the received C9. If so, Sj is

authentic. Uu then calculates C10 = H(C '7, C '8, N 'SU).

4. Uu sends {C10} to Sj.

5. After receiving {C10}, Sj computes C '10 = H(C7, C8, NSU) and checks to see if C '10

is equal to the received C10. If so, Uu is authentic. They, Uu and Sj, then compute

the common session key SK= H(C '7 +1, C '8+2, N 'SU +3) and SK= H(C7 +1, C8+2,

NSU +3) respectively.

2.2 Review of Hsiang-Shih’s protocol

In this section, we review Hsiang-Shih’s protocol. Their protocol consists of four

phases: (1) registration phase, (2) login phase, (3) mutual verification and session key

agreement phase, and (4) password change phase. In their protocol, RC has three

secrets, x, y and r. He first computes and sends H(SIDj,y) to the legal servers Sj, for j=1

to w. (Assume that there are w servers in the system.) We describe their protocol as

follows and also depict it in Figure 4.

(1) Registration phase

In this phase, Uu performs the following steps to register at RC for obtaining a

smart card so that he can access the resources of all servers.

1. Uu chooses PWu and a random number bu, and computes H(bu♁PWu). He then

10

Registration phase

 Uu RC

1. chooses random bu, PWu

computes H(bu♁PWu) IDu, H(bu, PWu)

2. computes Tu=H(IDu, x)

Vu=Tu♁H(IDu, H(bu♁PWu))
Au=H(H(bu♁PWu), r)♁H(x♁r)
Bu= Au♁H(bu♁PWu)
Ru=H(H(bu♁PWu),r), Hu=H(Tu)
stores Vu, Bu, Hu, and Ru in the
smart card

3. enters bu to smart card smart card
(smart card contains bu,Vu, Bu, Hu and Ru)

Login phase

 Uu Sj

1. keys IDu, PWu and SIDj
computes
Tu'=Vu♁H(IDu,H(bu♁PWu)),Hu'=H(Tu')
If Hu=Hu', generates a nonce Nu.
calculates
Ai'=Bu♁H(bu♁PWu)
CIDu=H(bu♁PWu)♁H(Tu',Au',Nu)
Puj= Tu'♁H(Au', Nu, SIDj)
Qu =H(Bu, Au', Nu)
Du=Ru♁SIDj♁Nu

C0=H(Au', Nu+1, SIDj) 2. CIDu, Puj, Qu, Du, C0, Nu

Mutual verification and session key agreement phase

 Uu Sj RC

 2. Mjr, SIDj, Du, C0, Nu

 4. C1, C2, Nrj

 6. Mij, Nj

 8. M* ij

Fig. 4. Hsiang-Shih’s protocol

11

sends {IDu, H(bu, PWu)} to RC through a secure channel.

2. RC computes Tu=H(IDu, x), Vu=Tu♁H(IDu, H(bu♁PWu)), Au=H(H(bu♁PWu), r)

♁H(x♁r), Bu= Au♁H(bu♁PWu), Ru= H(H(bu♁PWu), r) , and Hu=H(Tu). He

then stores Vu, Bu, Hu, and Ru to the smart card and issues the card to Uu through

a secure channel.

3. Uu enters bu to his card and the smart card now contains bu, Vu, Bu, Hu and Ru.

(2) Login phase

When Uu wants to login to Sj, he inserts his smart card and performs the

following steps.

1. Uu keys his IDu, PWu and SIDj to the smart card. The smart card computes Tu'=Vu

♁H(IDu, H(bu♁PWu)), Hu'=H(Tu'), and checks to see if Hu stored is equal to the

computed Hu'. If so, smart card knows Uu is the real card holder. It then

generates a random nonce Nu and calculates Au'=Bu♁H(bu♁PWu), CIDu= H(bu

♁PWu)♁H(Tu', Au', Nu), Puj= Tu'♁H(Au', Nu, SIDj), Qu =H(Bu, Au', Nu), Du=Ru♁

SIDj♁Nu, and C0=H(Au', Nu+1, SIDj).

2. Uu sends {CIDu, Puj, Qu, Du, C0, Nu} to Sj.

(3) Mutual verification and session key agreement phase

After receiving the login message from Uu, Sj executes the following steps

together with Uu for authenticating each other and computing a common session

key.

1. Sj generates a random nonce Njr and calculates Mjr= H(SIDj, y)♁Njr.

2. Sj sends { Mjr, SIDj, Du, C0, Nu} to RC.

12

3. RC computes N *
jr =Mjr♁H(SIDj, y), R*

u=Du♁SIDj♁Nu, A*
u=R*

u♁H(x♁r), and

C*
o= H(A*

u , Nu+1, SIDj). He checks to see if C*
o is equal to the received C0. If so,

the message is accepted. RC then generates a random nonce Nrj and calculates C1

= H(N *
jr , H(SIDj, y), Nrj), C2 = A*

u♁H(H(SIDj, y), N *
jr).

4. RC sends {C1, C2, Nrj} to Sj.

5. After receiving the message from RC, Sj computes H(Njr, H(SIDj, y), Nrj) and

checks to see if it is equal to the received C1. If so, RC is authentic. Sj then

calculates A'' u = C2♁H(H(SIDj, y), Nrj), T'' u = Puj♁H(A'' u , Nu, SIDj), hu=CIDu♁

H(T'' u , A'' u , Nu), and B'' u = A'' u ♁hu. After that, he computes H(B'' u , A'' u , Nu) and

compares it with the value Qu received in the login phase. If they are equal, the

login request is accepted. He proceeds to generate a random nonce Nj and

calculate Mij=H(B'' u , Ni, A'' u , SIDj).

6. Sj sends {Mij, Nj} to Uu.

7. Uu computes H(Bu, Ni, Au, SIDj) and checks to see if it is equal to the received Mij.

If it is, Sj is authentic. He then calculates M*
 ij =H(Bu, Nj, Au, SIDj).

8. Uu sends {M*
 ij } to Sj.

9. Sj computes H(B'' u , Nj, A'' u , SIDj) and checks to see if it is equal to the received

M*
 ij . If so, Uu is authentic.

10. After finishing mutual authentication, Uu and Sj can compute the common

session key as SK= H(Bu, Au, Nu, Nj, SIDj) and SK= H(B'' u , A'' u , Nu, Nj, SIDj),

respectively.

(4) Password change phase

13

When Uu wants to change his password from PWu to PWu
new, he executes the

following steps.

1. Keys his IDu, PWu.

2. The smart card computes Tu'=Vu♁H(IDu, H(bu♁Wu)), Hu'=H(Tu') and checks to

see if Hu stored in the smart card is equal to the computed Hu'. If so, Uu is the real

card holder.

3. The smart card allows Uu to submit a new password PWunew.

4. The smart card computes Vunew=Tunew♁H(IDu, H(bu♁PWunew)), Bunew= Bu♁H(bu

♁PWu)♁H(bu♁PWunew) and replaces Vu, Bu with Vunew, Bunew, respectively.

14

Chapter 3 Security loopholes in Tsai’s and Hsiang-Shih’s

protocols

In this chapter, we will show that Tsai’s protocol suffers from the server spoofing

attacks on both scenarios and Hsiang-Shih’s protocol suffers from the user impersonation

attack, and the off-line password guessing attack if the smart card is lost. We demonstrate

these security loopholes of both schemes in Section 3.1 and Section 3.2, respectively.

3.1 Server spoofing attack by an insider server on Tsai’s protocol

Assume that Si is a legal server registered at RC. He also has his secret H(SIDi, y).

He then can masquerade as a legal server Sj to cheat a remote user. This is because in

Tsai’s protocol, in the authentication of server and user phase, a user doesn’t examine

if the message is sent from the correct server. In the following, we present the server

spoofing attacks on scenarios (A) and (B), and illustrate them in Figure 5 and 6,

respectively.

(A) the secret key is not generated

For this case, we show the attack as follows.

1. When Uu wants to communicate with Sj, he starts the protocol and sends {IDu,

C1} to Si (who masquerades as Sj).

2. Si generates a nonce Ns, computes C2 = H(SIDi, y)♁Ns, and sends {IDu, SIDi,

C1, C2} to RC. Then, for the subsequent values C3, C4, C5, and C6 in the

15

 Uu Si (Sj) RC

 1. IDu, C1 2. IDu, SIDi, C1, C2

3. establishes AuthS-RC
4. generates a nonce NSU

computes
C7 =C6♁AuthS-RC

=H(H(IDu, x), N 'c)
C8 = C1♁C7
V2 = C7♁NSU
C9 = H(C7, NSU)♁C8

3. establishes
 AuthS-RC

5. V2 , C9

6. computes
 C '7 = H(H(IDu, x), Nc)
retrieves N 'SU= C '7♁V2
calculates C '8 = C '7♁C1
C '9 = H(C '7, N 'SU)♁C '8
checks C '9 =? C9
calculates
C10 = H(C '7, C '8, N 'SU)

7. C10

8. session key
SK= H(C '7 +1,C '8+2, N 'SU +3)

8. computes
 C '10 = H(C7, C8, NSU)
compares C '10 =?C10
session key
SK= H(C7 +1, C8+2, NSU +3)

Fig. 5. Server spoofing attack by an insider server on Tsai’s protocol for scenario (A) the secret key is not generated.

transmitted messages, except for C6 which is not used for comparison, between

RC and Si for authenticating each other are independent on Uu’s secrecy

H(H(IDu, x), Nc) (as depicted in scenario (A) of Fig. 2), RC and Si will be

doomed to achieve mutual authentication successfully.

3. RC and Si can then negotiate to establish the common secret key AuthS-RC=

H(H(SIDi, y), Ns+1, N 'RC +2)=H(H(SIDi, y), Ns'+1, NRC +2) in the phase of

16

server and RC authentication. Then, Si and Uu perform the authentication of

server and user phase.

4. Si generates a random nonce NSU and uses his AuthS-RC to compute C7 = C6♁

AuthS-RC =H(H(IDu, x), N 'c). He then calculates C8 = C1♁C7, V2 = C7♁NSU,

and C9 = H(C7, NSU)♁C8.

5. Si sends {V2 , C9} to Uu.

6. After receiving the message, Uu computes C '7 = H(H(IDu, x), Nc), retrieves

N 'SU=C '7♁V2, and calculates C '8 = C '7♁C1, C '9 = H(C '7, N 'SU)♁C '8. He then

checks to see if C '9 is equal to the received C9. If so, Uu confirms that the

message is sent from the sender who had received his C1 in the login phase. Si

disguising himself as Sj is thus regarded as being authentic by Uu. Uu then

calculates C10 = H(C '7, C '8, N 'SU).

7. Uu sends {C10} to Si.

8. Si computes C '10 = H(C7, C8, NSU) and checks to see if C '10 is equal to the

received C10. If so, Uu is authentic. They, Uu and Si, can then compute the

common session key as SK= H(C '7 +1, C '8+2, N 'SU +3) and SK= H(C7 +1, C8+2,

NSU +3), respectively.

From the above-mentioned, we can see that a server spoofing attack can be

successfully launched by the insider attacker Si.

(B) the secret key has been generated

For this case, we describe the attack as follows and also illustrate it in Figure 6.

1. Uu starts the protocol and sends {IDu, C1} to Si who masquerades as Sj.

17

 Uu Si (Sj) RC

 1. IDu, C1 2. IDu, SIDi, C1

 3. C6

4. generates a nonce NSU

computes
C7 = C6♁AuthS-RC

=H(H(IDu, x), N 'c)
calculates C8 = C1♁C7
V2 = C7♁NSU
C9 = H(C7, NSU)♁C8

5. V2 , C9

6. computes C '7 = H(H(IDu, x), Nc)
retrieves N 'SU= C '7♁V2
calculates C '8 = C '7♁C1
C '9 = H(C '7, N 'SU)♁C '8
checks C '9=?C9
calculates C10 = H(C '7, C '8, N 'SU)

7. C10

8. session key
SK= H(C '7 +1, C '8+2, N 'SU +3)

8. computes
 C '10 = H(C7, C8, NSU)
compares C '10 =? C10
session key
SK= H(C7 +1,

C8+2, NSU +3)

Fig. 6. Server spoofing attack by an insider server on Tsai’s protocol for scenario (B) the secret key has been generated.

2. When Si runs the authentication of server and RC phase, he simply sends {IDu,

SIDi, C1} to RC. RC deduces N 'c=H(IDu, x)♁C1 and computes C6 = H(H(SIDi,

y), Ns'+1, NRC +2)♁H(H(IDu, x), N 'c) = AuthS-RC♁H(H(IDu, x), N 'c).

3. RC sends {C6} to Si. Si then performs the authentication of server and user

phase together with Uu.

4. Si generates a random nonce NSU and uses the generated common secret key

18

AuthS-RC to compute C7 = C6♁AuthS-RC =H(H(IDu, x), N 'c). He then calculates

C8 = C1♁C7, V2 = C7♁NSU, and C9 = H(C7, NSU)♁C8.

5. Si sends {V2 , C9} to Uu.

6. After receiving the message, Uu computes C '7 = H(H(IDu, x), Nc), retrieves

N 'SU= C '7♁V2, and calculates C '8 = C '7♁C1, C '9 = H(C '7, N 'SU)♁C '8. He then

checks to see if C '9 is equal to the received C9. If so, Uu confirms that the

message is sent from the sender who has received his C1 in the login phase.

Henceforth, Si disguising himself as Sj is therefore regarded as being authentic

by Uu. Uu then proceeds to calculate C10 = H(C '7, C '8, N 'SU).

7. Uu sends {C10} to Si.

8. After obtaining the message from Uu, Si computes C '10 = H(C7, C8, NSU) and

checks to see if C '10 is equal to the received C10. If so, Uu is authentic. They

then compute the common session key SK= H(C '7 +1, C '8+2, N 'SU +3) and SK=

H(C7 +1, C8+2, NSU +3), respectively.

From the above-mentioned, we can see that the server spoofing attack launched

by insider attacker Si can be successfully accomplished.

3.2 Attack on Hsiang-Shih’s protocol

In the following, we demonstrate two attacks, (1) the impersonation attack and (2) the

off-line password guessing attack if the smart card is lost, on Hsiang-Shih’s protocol.

(1) The impersonation attack

For this attack, we further divide it into two cases: (a) outsider impersonation

19

attack, and (b) insider impersonation attack.

(a) Outsider impersonation attack

In Hsiang-Shih’s protocol, it can easily be seen that any passive attacker

can deduce all of a user Uu’s secrets stored in the smart card from the

messages, {Mjr, SIDj, Du, C0, Nu}, { CIDu, Puj, Qu, Du, C0, Nu}, and {C1, C2,

Nrj}, transmitted among Uu, Sj and RC. For he can deduce Au= C2♁H(Mjr),

and then obtain Ru, Tu, H(bu♁PWu) by computing Ru=Du♁SIDj♁Nu, Tu=Puj

♁H(Au, Nu, SIDj), and H(bu♁Wu)=CIDu♁H(Tu, Au, Nu). Hence, he can

impersonate Uu to login to Sj by sending a login request. For example, he

sends the login request {CIDu, P uj ', Qu ', Du ', C0 ', Nu'} to Sj by selecting a

new random nonce Nu' and computing CIDu= H(bu♁PWu)♁H(Tu, Au, Nu'),

Puj= Tu♁H(Au, Nu', SIDj), Qu =H(Bu, Au, Nu'), Du=Ru♁SIDj♁Nu', and

C0=H(Au, Nu'+1, SIDj). Obeying their protocol, it is obvious that he can

impersonate Uu to access all servers’s resources successfully.

(b) Insider impersonation attack

Assume that attacker E is a malevolent user registered at RC. He can use

his secret be, PWe, Be, and Re to deduce H(x♁r) by computing H(x♁r) =Be♁

Re♁H(be♁PWe). Then, he can use his computed H(x♁r), the eavesdropped

message {CIDu, Puj, Qu, Du, C0, Nu} transmitted between Uu and Sj in the

login phase, and the public parameter SIDj to deduce Ru, Au, Tu, H(bu♁PWu)

by computing Ru=Du♁SIDj♁Nu, Au=Ru♁H(x♁r), Tu=Puj♁H(Au, Nu, SIDj),

and H(bu♁Wu)=CIDu♁H(Tu, Au, Nu). He then can calculate all of Uu’s secrets

20

{Vu, Bu} stored in the smart card by computing Vu= Tu♁H(IDu, H(bu♁PWu))

and Bu= Au♁H(bu♁PWu). For E has all the secret data of Uu, he can therefore

impersonate Uu successfully in the same manner as the just described (a).

(2) Off-line password guessing attack if the smart card is lost

In the password change phase, when a user wants to change his password, the

smart card has to verify the correctness of the card holder’s password. Hence, if

the smart is lost or stolen, the attacker can read the secret data {bu, Vu, Hu} stored

in the smart card. He then can compute T’ =Vu♁H(IDu, H(bu♁PW’)), where PW’

is his guessing password, and check to see if his computed H(T’) is equal to the

stored value of Hu, without the help of any other entities. If the two values equal,

he successfully launches the attack. Else, he can repeat the above password

guessing attack until he obtains the correct one. Therefore, a smart-card-lost

off-line password guessing attack exists in Hsiang-Shih’s protocol.

Furthermore, after guessing the correct password, the attacker can enforce the

password change phase. Subsequently, from then on, the real card holder cannot

use his password to login to the remote server anymore. That is, their scheme

suffers from Denial-of-service attack as well.

21

Chapter 4 Our protocol

After presenting the attacks on protocols [6] and [3], in this chapter, we present our

novel method. Our protocol contains four phases. They are: (1) preparation phase, (2)

registration phase, (3) login phase, and (4) authentication and session key agreement phase

or authentication and password change phase. In our protocol, RC is trustworthy and has

two secret keys, x and y. All identities of users and servers are public, e.g., IDu and SIDj. In

the following, we describe the first two phases and also depict them in Figure 7. Then, for

more clarity, we combine the last two phases into the phase “login for authentication and

session key agreement or for authentication and password change phase” and divided it

into three scenarios: (A) the first time execution, (B) not the first time execution, and (C)

login for authentication and password change, with each scenario containing two phases. In

the following, we discuss these three scenarios in turn.

(1) Preparation phase

In this phase, for each server Sj with identity SIDj, RC performs the following steps.

1. RC computes RSj=H(SIDj, y).

2. RC sends RSj to Sj via a secure channel.

(2) Registration phase

In this phase, Uu performs the following steps to register at RC for obtaining a

smart card. Once having registered at RC, Uu can use the card to login to any eligible

server for accessing resources.

22

Preparation phase

 Sj RC

 1. RSj=H(SIDj, y)

 2. RSj

Registration phase

 Uu RC

1. chooses IDu, PWu

calculates H(IDu, PWu) IDu, H(IDu, PWu)

 2. calculates B=H(IDu, x)♁H(IDu, PWu)
 smart card smart card contains IDu and B

Fig. 7. Preparation phase and registration phase

1. Uu randomly chooses his IDu, PWu and calculates H(IDu, PWu). He then sends {IDu,

H(IDu, PWu)} to RC through a secure channel.

2. RC calculates B=H(IDu, x)♁H(IDu, PWu) and issues Uu a smart card containing IDu

and B through a secure channel.

(3) Login for authentication and session key agreement or for authentication and

password change phase

In our scheme, when Uu wants to login Sj, he may want to execute either

authentication and session key agreement or authentication and password change. We

first describe the former case using two scenarios: (A) the first time execution (of

23

login for authentication and session key agreement phase), and (B) not the first time

execution (of login for authentication and session key agreement phase). Then, we

describe the latter case using scenario (C) login for authentication and password

change phase. We describe them as follows.

(A) the first time execution (of login for authentication and session key agreement

phase)

(a) Login phase

When Uu wants to access Sj’s resources, he inserts his smart card and performs

the following steps. The steps are also illustrated in Figure 8.

1. Uu keys his IDu and PWu to the smart card. The smart card computes Bu=B♁

H(IDu, PWu), generates a random nonce c, and calculates Nc=gc, C1 =H(Bu,

SIDj, Nc).

2. Uu sends {IDu, SIDj, C1, Nc, Flag} to Sj, where Flag is set to ‘the first time

login’.

Login phase of the scenario (A)

 Uu Sj

1. keys IDu, PWu
computes
Bu=B♁H(IDu, PWu)

generates a nonce c
calculates Nc=gc

C1 =H(Bu, SIDj, Nc)

2. IDu, SIDj, C1, Nc, Flag

Fig. 8. Scenario (A): the first time execution (of login for authentication and session key agreement phase

24

Authentication and session key agreement phase of the scenario (A)

 Uu Sj RC

1. generates
a nonce s
calculates
Ns=gs
V1=H(RSj, IDu,

 Ns)
2. IDu, SIDj, C1,

 Nc,V1, Ns
3. checks IDu , SIDj

calculates
C*

1 =H(H(IDu, x), SIDj, Nc)
V*

1 =H(H(SIDj, y), IDu, Ns)
checks C*

1 =? C1 , V
*
1 =? V1

computes
C2= H(SIDj, H(IDu, x), Ns,Nc)
V2=H(IDu, H(SIDj, y), Nc, Ns)

4. C2, V2
5. computes

 V*
2 =H(IDu, RSj,

 Nc, Ns)
checks V*

2 =? V2

calculates
session key
SK=(Nc)s

computes
C3=H(C2♁SK)
Bj =H(IDu, RSj)
Bc = Bj♁SK

6. C3, Ns, Bc
7. computes

 session key
 SK '=(Ns)c
C*

3 = H(H(SIDj,
Bu, Ns, Nc)
♁SK ')

checks C*
3 =? C3

Bj'= Bc♁SK '
Buj = Bj'♁H(

IDu, PWu)
stores Buj

in smart card

Fig. 8-continued. Scenario (A): the first time execution (of login for authentication and session key agreement phase)

25

(b) Authentication and session key agreement phase

When receiving the login message from Uu, Sj executes the following steps to

determine if Uu is valid. If so, he negotiates the session key with Uu. The steps are

also illustrated in Figure 8-continued.

1. After receiving {IDu, SIDj, C1, Nc, Flag} from Uu, Sj reads Flag and knows that

Uu is the first time login. He then generates a random nonce s and calculates

Ns=gs, V1 =H(RSj, IDu, Ns).

2. Sj sends {IDu, SIDj, C1, Nc, Tu, V1, Ns} to RC.

3. After receiving the authentication request, RC first checks to see if IDu and SIDj

are valid. If so, RC calculates C*
1 =H(H(IDu, x), SIDj, Nc), V*

1 = H(H(SIDj, y),

IDu, Ns) and checks to see if they are equal to the received C1 and V1,

respectively. If so, RC confirms that both Uu and Sj are authentic and knows

that Uu attempts to login to Sj. He then computes C2=H(SIDj, H(IDu, x), Ns, Nc)

and V2=H(IDu, H(SIDj, y), Nc, Ns).

4. RC sends { C2, V2} to Sj.

5. After receiving the message from RC, Sj computes V*
2 =H(IDu, RSj, Nc, Ns) and

checks to see if it is equal to the received V2. If it is, Sj confirms that RC is

authentic. He then calculates the session key SK=(Nc)s to be shared with Uu and

computes C3=H(C2♁SK), Bj =H(IDu, RSj), and Bc = Bj♁SK.

6. Sj sends { C3, Ns, Bc } to Uu.

7. After receiving the message from Sj, Uu computes SK '=(Ns)c, C*
3 =H(H(SIDj, Bu,

Ns, Nc)♁SK ') and checks to see if this computed C*
3 is equal to the received

26

C3. If so, Uu confirms that Sj is authentic. He then calculates Bj'= Bc♁SK ', Buj =

Bj'♁H(IDu, PWu) and stores the common secret key Buj in his smart card for

the use of next time login without the help of RC’s authentication. Uu and Sj

then have the common session key SK '= SK= gc.s.

(B) not the first time execution (of login for authentication and session key agreement

phase)

When Uu wants to access Sj’s resources again, he inserts his smart card and

performs the following two phases. The steps are also illustrated in Figure 9.

(a) Login phase

1. Uu keys his IDu and PWu to the smart card. The smart card computes B*
j = Buj♁

H(IDu, PWu), generates a random nonce u, and calculates Nu=gu, C =H(B*
j , IDu,

SIDj, Nu).

2. Uu sends {IDu, SIDj, C, Nu, Flag} to Sj, where Flag is set to ‘not the first time

login’.

(b) Authentication and session key agreement phase

When receiving the login message from Uu, Sj executes the following steps to

determine if Uu is valid. If so, he negotiates the session key with Uu.

1. After receiving {IDu, SIDj, C, Nu, Flag } from Uu, Sj first checks to see if IDu is

valid. If IDu is legal, from the flag, Sj knows that Uu doesn’t login the first time.

He generates a random nonce j, calculates Nj=gj, Bj =H(IDu, RSj), C ' = H(Bj,

IDu, SIDj, Nu), and checks to see if C ' is equal to the received C. If so, Sj

confirms that Uu is authentic. He then calculates the session key K=(Nu)j and

27

Fig. 9. Scenario (B): not the first time execution (of login for authentication and session key agreement phase)

U=H(Nj, K♁Bj).

2. Sj sends {Nj, U} to Uu.

3. After receiving the message from Sj, Uu computes the session key K '=(Nj)u, U '=

Login phase

 Uu Sj

1. keys IDu, PWu
computes
B*

j = Buj♁H(IDu, PWu)

generates a nonce u,

calculates Nu=gu,
C =H(B*

j , IDu, SIDj, Nu)

2. IDu, SIDj, C, Nu, Flag

Authentication phase and session key agreement phase

 Uu Sj

 1. checks IDu

generates j, calculates Nj=gj
Bj =H(IDu, RSj)
C '= H(Bj, IDu, SIDj, Nu)
C '=? C
session key K=(Nu) j

calculates U=H(Nj, K♁Bj)

 2. Nj , U

3. session key K '=(Nj) u

calculates U '=H(Nj, K '♁B*
j)

U '=? U

28

(Nj,K '♁B*
j) and checks to see if U ' is equal to the received U. If it is, Uu

confirms that Sj is authentic. Uu and Sj then have the common session key K ' =

K=g u j.

(C) Login for authentication and password change

To get rid of the weakness caused by losing the smart card as described in Section

3.2.(2) of Chapter 3, when executing the password change phase, the client had better

go through the supervision of RC. Under such a limitation, it not only can let the client

choose and change his password freely but also can prevent the password guessing

attack if the smart card is lost. Due to this observation, the password change phase of

our design goes through the intervention of RC. It contains two phases: (a) login phase,

and (b) authentication and password change phase.

When Uu wants to change his password, he performs the following two phases. The

steps are also illustrated in Figure 10.

(a) Login phase

1. Uu keys his IDu, PWu, and a new password PWu
new to the smart card. The smart

card checks PWu to see if IDu is the real cardholder. If so, the card computes

Bu=B♁H(IDu, PWu), generates a random nonce c, and calculates Nc=gc, C1

=H(Bu, H(IDu, PWu
new), Nc), and CP1=H(Bu, Nc)♁H(IDu, PWu

new).

2. Uu sends {IDu, SIDj, C1, CP1, Nc, Flag} to RC, where Flag is set to ‘for

password change’.

(b) Authentication and password change phase

1. From Flag, RC knows this login request from Uu is for password change. He

29

Login phase

 Uu RC

1. Uu keys IDu, PWu, PWu
new, checks IDu

computes Bu=B♁H(IDu, PWu)
generates nonce c
calculates Nc=gc

C1 =H(Bu, H(IDu, PWu
new), Nc)

CP1=H(Bu, Nc)♁H(IDu, PWu
new)

2. IDu, SIDj, C1,

 CP1, Nc, Flag

Authentication and password change phase

 Uu RC

1. checks IDu, SIDj

retrieves H(IDu, PWu
new)=

CP1♁H(H(IDu, x), Nc)
calculates
C*

1 = H(H(IDu,x),H(IDu,
PWu

new),Nc)
checks C*

1 =? C1

generates nonce t
calculates Nr =gt, K=gc.t
CP2=H(IDu, K)
CP3=H(Flag, H(IDu, x), Nc, Nr)

2. CP2, CP3, Nr

3. calculates K '=(Nr)c, CP*
2 =H(IDu, K)

CP*
3 =H(Flag, Bu, Nc, Nr)

compares CP*
2 =?CP2

compares CP3=?CP*
3

replaces B with Bu♁H(IDu, PWu
new)

Fig. 10. Scenario (C): Login for authentication and password change phase

checks to see if IDu and SIDj are valid. If they are valid, RC then retrieves

H(IDu, PWu
new) by computing CP1 ♁ H(H(IDu, x), Nc), calculates C *

1 =

30

H(H(IDu, x), H(IDu, PWu
new), Nc), and checks to see if C*

1 is equal to the

received C1. If so, Uu is authentic. RC then generates a random nonce t and

calculates Nr =gt, K=gc.t, CP2=H(IDu, K), and CP3=H(Flag, H(IDu, x), Nc, Nr),

where Flag is set to ‘accept’.

2. RC sends {CP2, CP3, Nr} to Uu.

3. After receiving the message from RC, Uu calculates K '=(Nr)c, CP*
2 =H(IDu, K),

and CP*
3 =H(Flag, Bu, Nc, Nr) and checks to see if CP*

2 is equal to the

received CP2. If so, Uu confirms that RC is authentic. He then compares CP3

with CP*
3 . If they are equal, Uu knows that his password change request has

been accepted by RC. The smart card then replaces the stored B with Bu♁

H(IDu, PWu
new).

31

Chapter 5 Security analysis of our protocol

We will show that our protocol not only can provide mutual authentication, perfect

forward secrecy, changing password freely and securely, and session key agreement but

also can resist various attacks such as, stolen-verifier attack, insider-server spoofing attack,

insider-user impersonating attack, off-line password guessing attack, on-line password

guessing attack, replay attack, parallel session attack (Man-in-the-Middle attack),

smart-card-lost attack, and so on. For abbreviation, in the following, we use notations D(A),

D(B), and D(C), to denote the discussion for the three scenarios, (A), (B), and (C),

respectively (as described in Section 4.(3) of Chapter 4). In each discussion, we

demonstrate how our protocol can achieve each of the above-mentioned security property,

if the analysis for that scenario is needed.

5.1 Mutual authentication

D(A): Mutual authentication between each pair among the three parties, user Uu,

server Sj and RC.

As shown in Figure 8-continued, for authenticating Uu after receiving his

login request, Sj first sends {IDu, SIDj, C1, Nc, V1, Ns} to RC. RC verifies the

validities of both C1 and V1. If they are valid, RC confirms that both Uu and Sj

are authentic. Here, if we use A B to represent A authenticates B, or

equivalently, B is regarded as being authentic by A, we can demonstrate these

32

relations using the two solid arrows, and , as indicated in Figure 11. RC

then sends C2 and V2 to Sj. Sj verifies the validity of V2. If it is valid, Sj

confirms that RC is authentic. This is also depicted in Figure 11 by the solid

arrow . He then sends {C3, Ns} to Uu. Also, Uu has to verify {C3, Ns} to

authenticate Sj. If C3 is valid, Uu confirms that Sj is authentic. This is depicted

using the solid arrow in the figure. It is obvious that authenticity relationship

has transitive property by way of the intermediate node when the identities of

both communicating parties and their common secret are committed, e.g., to a

hash function. For example, if A B and B C, then A C by

way of B. According to this rule, we can obtain the dashed arrow from

and (as shown in Figure 11). The remaining dashed arrow can be

obtained by using the following proof of contradiction. For we already know

the facts that RC Sj and RC Uu by way of Sj, if Sj Uu

doesn’t hold, then from the transitive property, RC Uu by way of Sj can’t

hold as well. This contradicts the fact that RC Uu by way of Sj. Hence,

the dashed arrow must exist. This completes the proof and Figure 11 thus

exists. From the figure, we can see that the mutual authentications between

each pair of the three parties are satisfied.

Fig. 11. Authenticity relationship

 Uu

 Sj

 RC

33

D(B): Mutual authentication between user Uu and server Sj.

For authenticating Uu after receiving his login request {IDu, SIDj, C, Nu,

Flag}, Sj verifies the validity of C. If it is valid, he confirms that Uu is

authentic and then sends Nj and U to Uu. Uu verifies the validity of U. If it is

valid, he confirms that Sj is authentic.

D(C): Mutual authentication between user Uu and RC.

For authenticating Uu after receiving his password change request {IDu, SIDj,

C1, CP1, Nc, Flag}, RC verifies the validity of C1. If it is valid, he confirms

that Uu is authentic and then sends CP2, CP3 and Nr to Uu. Uu verifies the

validities of CP2 and CP3. If they are valid, he confirms that RC is authentic.

5.2 Session key agreement

D(A): In our protocol, after a legal user Uu has logged into an eligible server and

finished the authentication and session key agreement phase, they have the

same session key. This can easily be seen in the two steps, step 5 and step 7, of

the authentication and key agreement phase executed by Sj and Uu respectively

in Section 4.(3).(A).(b) of Chapter 4.

D(B): It can also be easily seen in step 1 and step 3 of the authentication and key

agreement phase executed by Sj and Uu in Section 4.(3).(B).(b) of Chapter 4.

5.3 Perfect forward and backward secrecy

In our scheme, a compromised password can’t be used to construct previous session

34

keys for that we use the Diffie-Hellman key agreement protocol which are based on

random nonces. In other words, the session keys generated before and thereafter in

each session between the user and server are independent. Accordingly, our scheme

provides perfect forward and backward secrecy in both scenarios, (A) and (B).

5.4 Changing password freely and securely

In our protocol, user Uu can change his password freely and securely. Even an

attacker E can temporarily obtain Uu’s smart card, E can’t change Uu’s password from

PW1 to PW2 without the knowledge of Uu’s password, where PW1 and PW2 are two

passwords guessed and selected by E respectively. He can’t replace B with B♁H(IDu,

PW1)♁H(IDu, PW2), where B is the value stored in Uu’s smart card. Because the

password change request can only be accepted after successful mutual authentication

between Uu and RC as stated in Section 4.(3).(C).(b) of Chapter 4.

5.5 Preventing the stolen-verifier attack

The protocol we proposed doesn’t hold any verifier table. RC holds only two secret

keys, x and y. Each user has only one secret H(his identity, x) and each server has only

one secret H(his identity, y). Therefore, our scheme gets rid of using verifier tables

and thus can prevent the stolen-verifier attack.

5.6 Preventing the insider-server spoofing attack

Our scheme needn’t to assume that all servers are trustworthy as required in [7, 9,

35

12]. For in our protocol, if Si wants to masquerade as Sj, he will be rejected. Since

without the knowledge of Sj’s secret RSj= H(SIDj, y) , he cannot be regarded as Sj

successfully by both RC and Uu. In the following, we will discuss this for the two

scenarios, (A) and (B), in D(A) and D(B) respectively.

D(A): If Si sends the message, as in step 2 of Section 4.(3).(A) of Chapter 4, to RC by

impersonating Sj, then without the knowledge of Sj’s RSj and RC’s secret key y,

Si can’t obtain the value V1= H(H(SIDj, y), IDu, Ns) to be regarded as authentic

by RC.

Assume that Si, intercepting the messages {Nc} in step 2 and {C2} in step 4

as shown in Figure 8-continued, wants to impersonate Sj to Uu. He sends the

message {C3, g
s', Bc} to Uu for step 6, where C2=H(SIDj, H(IDu, x), Ns, Nc),

Ns=g
s, s is a noce selected by Sj, s' is a noce selected by Si, C3=H(C2♁(Nc)s'),

and Bc = H(IDu, RSi)♁SK. Uu computes C*
3 =H(H(SIDj, Bu, g

s', Nc)♁(g
s')c)

and compares it with C3, where Bu=H(IDu, x), Nc=g c. Uu will find that they

are not equal and terminate the session. Hence, Si can’t impersonate Sj to be

authenticated by Uu successfully.

D(B): Assume that Si, intercepting the login messages {IDu, SIDj, C, Nu, Flag} from

Uu as depicted in Figure 9, wants to impersonate Sj to Uu. He chooses a random

number i and sends the message { gi, U} to Uu, where U=H(gi, (Nu)i♁H(IDu,

RSi)). Uu computes U '=H(gi, (gi)c♁B*
j) and compares it with the received U,

where B*
j = Buj♁H(IDu, PWu)= H(IDu, RSj). He will find they are not equal and

terminate the session. Hence, Si can’t impersonate Sj to Uu successfully in this

36

case.

5.7 Preventing insider-user impersonating attack

In our scheme, if a legal malicious Un wants to impersonate Uu to login to Sj.

Without the knowledge of Uu’s B and PWu, he cannot be regarded as Uu by both RC

and Sj successfully. In the following, we demonstrate that how our protocol can

prevent this kind of attack in scenarios, (A) and (B).

D(A): In this scenario, assume that Un impersonates Uu and sends the loging request

{IDu, SIDj, C1, gc', Flag} to Sj, where C1 =H(Bn, SIDj, gc'), Bn=B♁H(IDn, PWn)

=H(IDn, x), and c' is a nonce selected by Un. The value of C1 which Un

computes would be different from the value of RC’s computation C*
1 =H(H(IDu,

x), SIDj, gc') as shown in Figure 8-continued. Hence, he can’t be authenticated

by RC.Therefore, the insider impersonating attack fails.

In another case of this scenario, assume Un intercepting Uu’s loging request

{IDu, SIDj, C1, gc, Flag} wants to impersonate Uu and resends it to Sj without

modification, where c is a nonce selected by Uu. After the completion of mutual

authentication between Sj and RC, Sj sends {C3, gs, Bc} to Un, where Bc = Bj♁

(gc)s =H(IDu, RSj)♁(gc)s and s is a nonce selected by Sj. Un can deduce neither

Bj nor SK by computing Bj = Bc♁(gs)c and SK= (gs)c. Since Un doesn’t have

the knowledge of c. Hence, the insider impersonating attack fails.

D(B): Similarly, in this scenario, if Un wants to impersonate Uu and sends a login

request to Sj, he can not be authenticated by Sj successfully. Since he doesn’t

37

have the correct Bj= H(IDu, RSj) for computing C to be authenticated by Sj as

indicated in Figure 9. Even if Un is lucky enough to be authenticated

successfully by Sj by resending him the login message from Uu and receives

the message {Nj, U} from Sj, he can’t obtain the correct session key K '=(Nj) u

for he doesn’t have the knowledge of the random nonce u which is selected by

Uu. Hence, the insider impersonating attack fails.

5.8 Preventing off-line and on-line password guessing attack

D(A): In this scenario, there are four messages: M1={IDu, SIDj, C1, Nc, Flag},

M2={IDu, SIDj, C1, Nc, V1, Ns}, M3={ C2, V2}, and M4={ C3, Ns, Bc}, to and

from through the Internet. Assume that an attacker E who hasn’t got Uu’s smart

card wants to guess Uu’s password PWu. (If E has got Uu’s smart card, this case

is termed as smart-card-lost attack. We will discuss this attack in section 5.11.)

We argue that E will not succeed. For among all the transmitted messages (M1

through M4), except for C1 computed by Uu in M1 and M2, Sj and RC needn’t

use Uu’s password PWu to compute any values. Moreover, PWu in C1 is

protected by a hash function iterating two times, i.e., C1 =H(B♁H(IDu, PWu),

SIDj, Nc). Not to mention, its inner hash result is Xor-ed by an unknown value

B. Hence, E can hardly succeed in guessing PWu due to the one-way property

of a hash function and the unknown value of B, E therefore can’t implement an

off-line password guessing attack. For the same reason, we can easily see that

an attacker can not launch an on-line password guessing attack if we set our

38

protocol to tolerate three times of wrong password logins. The reasons for

scenarios (B) and (C) are similar to the above-mentioned. We omit them here.

5.9 Preventing replay attack

D(A): Scenario (A) uses different random nonces, c and s, each time in computing Nc

and Ns which are needed in computing the related values, such as C1, V1, C2, V2,

C3 and Bc. Henceforth, it is obvious that our protocol in this scenario can

prevent any replay attack.

D(B): Similarly, in scenario (B), it also uses two different random nonces, u and j,

each time in computing Nu and Nj which are needed in computing the related

values, such as C and U. Hence, the replay attack in this scenario can also be

avoided.

D(C): Again, this scenario uses different random nonces, c and t, each time in

computing Nc and Nr which are needed in computing the related values, such

as C1, CP1, CP2 and CP3. Therefore, this scenario also can prevent the replay

attack.

From the above analysis, we can see that in our protocol, an attacker cannot be

authenticated successfully by resending any previous transmitted values to the

intended party.

5.10 Preventing parallel session (Man-in-the-Middle) attack

Assume that an attacker E wants to launch a parallel session attack by

39

masquerading as both Sj to Uu and Uu to Sj. We demonstrate how our protocol can

withstand this kind of attack in the following.

D(A): After receiving the login message M={IDu, SIDj, C1, Nc, Flag} from Uu, E

masquerading as Uu starts another protocol by resending M to Sj. For more

clarity, we roughly show this case in Figure 12. Although, using value C1, E

can pass RC’s authentication after Sj sends M to RC. However, without the

knowledge of Uu’s nonce c, he can’t finish the authentication and session key

agreement phase to impersonate Uu to Sj. This is because E, without the

knowledge of c, can’t compute the correct session key SK ', (Ns)c, shared with

Sj. Similarly, E can’t impersonate Sj to Uu for he hasn’t Sj’s secret RSj to

compute V1 for being verified by RC. Hence, E can’t obtain C2, V2 from RC

to compute a valid C3=H(C2♁SK) which will be transmitted to Uu for Uu to

authenticate Sj. In other words, E can not succeed in impersonating Sj to Uu.

Therefore, the parallel session attack fails in this scenario.

Uu (Sj)

 M

E

 (Uu) Sj
 M

Fig. 12. Parallel session attack

D(B): After receiving the login message M={IDu, SIDj, C, Nu, Flag} from Uu to Sj, E

masquerading as Uu starts another protocol by resending M to Sj. Although,

using value C, E can pass Sj’s authentication. However, without the

knowledge of Uu’s nonce u, he can’t finish the authentication and session key

40

agreement phase to impersonate Uu to Sj. This is because E, without the

knowledge of u, can’t compute the correct session key K ', (Nj)u, shared with

Sj. Hence, the parallel session attack fails.

D(C): Since, E doesn’t obtain Uu’s smart card, he can’t replace the stored value B

with any one as in step 3 of Figure 10 to finish the password change phase.

Hence, the attack on this scenario is meaningless and doesn’t exist.

5.11 Preventing smart-card-lost attack

Assume that an attacker Un has got Uu’s smart card and knows the stored value B.

We will show that even under such a situation, our protocol still can prevent various

attacks including: (1) insider impersonating attack, (2) outsider impersonation attack,

(3) off-line password guessing attack, (4) on-line password guessing attack, (5)

replay attack. We analyze each type of attack as follows.

(1) Insider impersonating attack: Although, Un obtains the smart card and knows the

value B. However, he can’t use his guessing password PW ' to be authenticated

by RC without the knowledge of Uu’s PWu. For in scenario (A), the value C1

=H(B♁H(IDu, PW '), SIDj, Nc) which Un computes would be different from the

value of RC’s computation C*
1 =H(H(IDu, x), SIDj, Nc), where B=H(IDu, x)♁

H(IDu, PWu). And in scenario (B), the value C =H(B*
j , IDu, SIDj, Nu) Un

computes would be different from the value of Sj’s computation C ' =H(Bj, IDu,

SIDj, Nu), where B*
j = Buj♁H(IDu, PWu)= H(IDu, RSj)♁H(IDu, PW ')♁H(IDu,

PWu), Bj= H(IDu, RSj). As for scenario (C), the value C1 =H(Bu, H(IDu, PWu
new),

41

Nc) which Un computes would be different from the value of RC’s computation

C*
1 = H(H(IDu, x), H(IDu, PWu

new), Nc), where Bu=B♁H(IDu, PW ')= H(IDu, x)

♁H(IDu, PWu)♁H(IDu, PW ')≠H(IDu, x). Hence, the insider Un’s login request

for each of the three scenarios, (A), (B), and (C), can be detected. Therefore, the

insider attack fails.

(2) Outsider impersonation attack: The reason for this attack prevention is similar to

the analysis just mentioned above. Assume that an un-registered user getting

Uu’s smart card wants to impersonate Uu by starting the protocol with Sj for

scenario (A) or (B), or with RC for scenario (C). However, without the

knowledge of Uu’s password PWu, he can not deduce the correct value of Bu=B

♁H(IDu, PWu)=H(IDu, x) to compute C1 to be verified by RC for scenarios (A)

and (C), or the correct value of B*
j = Buj♁H(IDu, PWu)= H(IDu, RSj) to compute

C to be verified by Sj for scenario (B). Since each password guessing for each

impersonation needs passing the verification of RC or Sj. Hence, the attacker

could hardly be authenticated successfully. This means the outsider

impersonation attack fails in our protocol.

(3) Off-line password guessing attack: Assume Un gets the smart card, he wants to

launch an off-line password guessing attack. For we know that the smart card

contains IDu, B=H(IDu, x)♁H(IDu, PWu) for scenarios (A) and (C), and IDu and

Buj= Bj'♁H(IDu, PWu) =H(IDu, H(SIDj, y))♁H(IDu, PWu) for scenario (B). We

assume that Un has the knowledge of H(IDu, x) or H(IDu, H(SIDj, y)), he can

check to see if his guessing password PW ' is correct by comparing his computed

42

B♁H(IDu, PW ') with H(IDu, x) or his computed Buj♁H(IDu, PW ') with H(IDu,

H(SIDj, y)). If the two values equal, he successfully launches the attack. Else, he

can repeat the above password guessing attack until he obtains the correct one.

However, any legal user or un-registered user can’t obtain H(IDu, x) or H(IDu,

H(SIDj, y)) without the knowledge of RC’s secrets x and y. Though Un can get

H(IDn, x) by computing H(IDn, x)=B♁H(IDn, PWn), where B is stored in Un’s

smart card, he can’t deduce x from H(IDn, x) to calculate H(IDu, x). Since H(.) is

a collision-resistant one-way hash function. Hence, no one can implement the

off-line password guessing attack.

(4) On-line password guessing attack: For an invalid login request or password chang

request can be detected with the wrong password as described in (1), and each

password guessing for each impersonation attack needs the help of RC’s or Sj’s

verification as described in (2), the attacker could hardly be authenticated

successfully. In other words, without a correct password PWu to compute the

specified Bu=B♁H(IDu, PWu) or B*
j = Buj♁H(IDu, PWu), Un can’t pass RC’s or

Sj’s verification (see Figure 8, 9). Moreover, if we set the protocol to tolerate

three times of wrong password logins, the impossibility of on-line password

guessing attack can be easily seen. Hence, the on-line password guessing attack

doesn’t exist in our scheme.

Except for the resistance of the above mentioned attacks, under the loss of smart

card, our protocol also can prevent replay attack. The reasons are the same as the

previously described as in Section 5.9.

43

Chapter 6 Discussion

In this chapter, we first show that our protocol meets the requirement of single

registration property in Section 6.1. Then, to show the advantages of our scheme, in

Section 6.2, we compare our protocol with both Tsai’s [6] and Hsiang-Shih’s [3] in

communication cost. In Section 6.3, we compare our protocol with [1, 5, 8, 9, 10] in the

aspects of card-issue cost. Section 6.4 discusses why our scheme doesn’t adopt the

dynamic ID concept as do in [14, 3] and Section 6.5 shows the importance of RC-off-line

authentication. Finally, we make a comparison table for our protocol and the other

proposed schemes so far in Section 6.6.

6.1 Single registration

In our protocol, it is not necessary for a user to register at each server. He is

required to register at RC only once. Thereafter, he can access all of the legal servers’

resources by only using one password.

6.2 Low communication cost

As indicated in Figure 1 through Figure 3, Tsai’s protocol [6] needs seven passes

for scenario (A) (one pass for login phae, four passes for authentication of server and

RC phase, and two phases for authentication of server and user phase) and five passes

for scenario (B) (one pass for login phase, two passes for authentication of server and

44

RC phase, and two passes for authentication of server and user phase). Hsiang-Shih’s

protocol [3] needs five passes whenever a user wants to login to a server (one pass for

login phase, and four passes for mutual verification and session key agreement phase)

as indicated in Figure 4. However, ours needs only four passes for scenario (A) (one

pass for login phae and three passes for authentication and session key agreement

phase) and only two passes for scenario (B) (one pass for login phae and one pass for

authentication and session key agreement phase). Therefore, our protocol is

significantly more efficient than [6] and [3]. Since when we estimate the efficiency of

a protocol, the number of passes needed is always the dominant factor when compared

with its computation overhead. That is, our scheme is the most efficient one when

compared with theirs.

6.3 Increasing servers freely/ Low card-issue cost

Several schemes, [1, 5, 8, 9, 10, 15], can’t add a server freely. For in them, when a

server is added, all of the users who want to login to the newly added server need to

re-register at RC to get a new smart card. It increases the system’s card-issue cost.

However, in our protocol, when a server is added, all users don’t need to re-register.

He can use his card to access all of this newly added server’s resources. That is, our

protocol can let the number of servers increase freely and thus has low card-issue cost.

6.4 Why we don’t adopt dynamic ID

In [3, 14], both schemes use the concept of dynamic ID which can let the server

45

authenticate the user without the knowledge of user ID. But Hsiang and Shih [3] has

pointed out that Liao-Wang’s dynamic ID protocol [14] is vulnerable to the insider

attack. In addition, also based on this dynamic ID concept, they proposed an

improvement attempting to get rid of the weakness. However, in this paper, we further

present an insider attack on Hsiang-Shih’s protocol [3]. Note that the two insider

attacks, pointed by [3] and us respectively, only eavesdrop on the transmitted

messages, without any help of the smart card. This means that a dynamic-ID based

protocol is fragile by using only the computation of a hash function even the function

is embedded with some modular exponential operation. For example, Uu’s dynamic ID,

CIDu, is computed as CIDu= H(bu♁PWu)♁H(Tu', Au', Nu) as described in Section 2.2

of Chapter 2. Uu then can send {CIDu, Puj, Qu, Du, C0, Nu} to Sj, where Qu =H(Bu, Au',

Nu) is originally designed to be checked by Sj to see if the login request is sent from

the legal user Uu (see Figure 4). But indeed Qu can only be used to decide if the login

request is sent from a legal user (insider) due to the fact that the identity of the real

intended party, IDu, is not embedded in Qu(=H(Bu, Au', Nu)=H(Bu, Bu♁H(bu♁PWu),

Nu)).

From another point of view, the insider Un can randomly select four numbers, Nu, b,

t, and v, and set Bu= b, Tu= t, Ru= v, and Au'= v♁H(x♁r), where H(x♁r) can be

obtained as described in 3.2.(1).(b). After these setting, he can impersonate Uu and

send the login request {CIDu, Puj, Qu, Du, C0, Nu} to Sj by computing CIDu= v♁H(x♁

r)♁b♁H(t, v♁H(x♁r), Nu), Puj= t♁H(v♁H(x♁r), Nu, SIDj), Qu =H(b, v♁H(x♁r),

Nu) =H(b, Au', Nu), Du= v♁SIDj♁Nu, and C0=H(v♁H(x♁r), Nu +1, SIDj). After that,

46

Sj sends the message to RC as indicated in the mutual verification and session key

agreement phase in Figure 4. In RC’s turn, RC can deduce the same A*
u as Au' which

Un generates and Sj can deduce the same A'' u and B'' u as Au' and b, which are also

generated by Un. Therefore, Un can be authenticated successfully by both RC and Sj.

Since, RC authenticates Un by checking if his computed C*
o= H(A*

u , Nu+1, SIDj) equals

the received C0(=H(Au', Nu+1, SIDj)) from Un, and Sj authenticates Un by checking if

his computed H(B'' u , Nj, A'' u , SIDj) equals the received M*
 ij (=H(Bu, Nj, Au, SIDj)) (also

refer to steps 3 and 5 of Section 2.2.(3) of Chapter 2). This is why the insider Un can

successfully launch an impersonation attack. Henceforth, we don’t adopt the dynamic

ID concept in our scheme. In the following, we show the deductions by equations (1),

(2), and (3) respectively.

A*
u= R*

u♁H(x♁r)

= Du♁SIDj♁Nu♁H(x♁r) by R*
u=Du♁SIDj♁Nu

= v♁SIDj♁Nu♁SIDj♁Nu♁H(x♁r)

= v♁H(x♁r) by Du= v♁SIDj♁Nu

= Au' ...(1)

A'' u = C2♁H(H(SIDj, y), Nrj)

= A*
u♁H(H(SIDj, y), Nrj)♁H(H(SIDj, y), Nrj)

= A*
u by C2=A*

u♁H(H(SIDj, y), Nrj)

= Au' by (1) ...(2)

B'' u = A'' u ♁hu

47

= v♁H(x♁r)♁hu by (2) and Au'= v♁H(x♁r)

= v♁H(x♁r)♁CIDu♁H(T'' u , A'' u , Nu)

 by hu=CIDu♁H(T'' u , A'' u , Nu)

= v♁H(x♁r)♁v♁H(x♁r)♁b♁H(t, v♁H(x♁r), Nu)♁H(T'' u , A'' u , Nu)

= b by CIDu= v♁H(x♁r)♁b♁H(t, v♁H(x♁r), Nu)
........(3)

6.5 RC-off-line authentication

In protocol [6] and [3] (see Figure 2 for [6] and Figure 4 for [3]), when a user wants

to log into a server, the server has to send the authentication request to RC for

authenticating the user. Even in scenario (B) of [6], after RC and the server had

generated the secret key, the server still needs to send the user’s authentication request

to RC. This means RC needs to be always on-line for authenticating a user. However,

our protocol only requires the server sending the user’s authentication request to RC

when the user first logs into the server (as described in Section 4.(3).(A) of Chapter 4).

If the user isn’t the first time execution of login for authentication and session key

agreement phase, the login request sent to the server can be verified by the server itself,

without the intervention of RC (as described in Section 4.(3).(B) of Chapter 4). This

can significantly reduce both the computational and the communicational overhead

when the system is busy. This is the reason why our protocol is designed to be a

RC-off-line authentication.

6.6 Comparisons

In this section, we compare the security features mentioned in Chapter 5 among our

48

scheme and the other proposed schemes listed in the reference, except [12] and [13]

which only point out the weakness of [4] and [14] respectively without proposing a

new method. After comparing with those schemes, we can see that our scheme not

only can provide the secure RC-off-line authentication and resist against all kinds of

attacks but also can add a server freely. We summarize the comparison result of each

property in Table 1 and list the reasons for why the corresponding scheme in the table

can’t attain the security features in Appendix A. From Table 1, we can see that our

protocol is the most favorite protocol for a multi-server environment.

Tab. 1. The comparison of our scheme and other proposed schemes

 Ours [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [14][15]

1. RC-off-line authentication ○ ○ ○ × ○ ○ × ○ ○ ○ ○ ○ ○ ○

2. Increasing servers freely ○ × ○ ○ ○ × ○ ○ × × × ○ ○ ×

3. No assuming that all servers are trustworthy ○ ○ × ○ ○ ○ ○ × ○ ○ ○ ○ ○ ×

4. Low computationally intensive ○ ○ ○ ○ ○ ○ ○ ○ ○ × × ○ ○ ○

5. No verifier table in RC or any server ○ ○ ○ ○ ○ ○ × ○ ○ ○ ○ × ○ ○

6. Mutual authentication ○ ○ ○ ○ × ○ ○ ○ ○ × × ○ ○ ×

7. Preventing insider-server spoofing attack ○ ○ × ○ ○ ○ × × ○ ○ ○ ○ × ×

8. Preventing off-line password guessing attack ○ ○ ○ ○ × ○ ○ ○ ○ ○ ○ ○ × ○

9. Preventing parallel session attack ○ ○ ○ ○ × ○ ○ ○ ○ × × ○ × ○

10. Preventing smart-card-lost attack ○ ○ ○ × × × ○ × × × × ○ × ○

49

Chapter 7 Conclusion

In this paper, we have analyzed the security of Tsai’s and Hsiang-Shih’s protocols and

found several attacks existing in their schemes. In addition, we also propose a novel secure

protocol for multi-server environments. After the security analysis, we conclude that our

protocol is not only the most secure but also the most efficient scheme using smart card in

a multi-server environment up to date. We have shown this in Table 1.

50

References

[1] C.C. Chang, and J.Y. Kuo, “An efficient multi-server password authenticated key

agreement scheme using smart cards with access control”, Proceedings of

International Conference on Advanced Information Networking and Applications,

Vol. 2, No. 28-30, pp. 257-260, March 2005.

[2] C.C. Chang, and J.S. Lee, “An efficient and secure multi-server password

authentication scheme using smart cards”, Proceedings of International Conference

on Cyberworlds, No. 18-20, pp. 417-422, November 2004.

[3] H.C. Hsiang, and W.K. Shih, “Improvement of the secure dynamic ID based remote

user authentication scheme for multi-server environment”, Computer Standards &

Interfaces, In Press, Available online December 2008.

[4] I.C. Lin, M.S. Hwang, and L.H. Li, “A new remote user authentication scheme for

multi-server architecture”, Future Generation Computer Systems, Vol. 19, No. 1, pp.

13-22, January 2003.

[5] J. H. Lee, and D. H. Lee, “Efficient and Secure Remote Authenticated Key Agreement

Scheme for Multi-server Using Mobile Equipment”, Proceedings of International

Conference on Consumer Electronics, pp. 1-2, January 2008.

[6] J.L. Tsai, “Efficient multi-server authentication scheme based on one-way hash

function without verification table”, Computers & Security, Vol. 27, No. 3-4, pp.

51

115-121, May-June 2008.

[7] L. Hu, X. Niu, and Y. Yang, “An Efficient Multi-server Password Authenticated Key

Agreement Scheme Using Smart Cards”, Proceedings of International Conference on

Multimedia and Ubiquitous Engineering, pp. 903-907, April 2007.

[8] R.J. Hwang, and S.H. Shiau, “Password authenticated key agreement protocol for

multi-servers architecture”, Proceedings of International Conference on Wireless

Networks, Vol. 1, No. 13-16, pp. 279-284, June 2005.

[9] W.J. Tsaur, C.C. Wu, and W.B. Lee, “An enhanced user authentication scheme for

multi-server Internet services”, Applied Mathematics and Computation, Vol. 170, No.

1-1, pp. 258-266, November 2005.

[10] W.J. Tsaur, C.C. Wu, and W.B. Lee, “A smart card-based remote scheme for password

authentication in multi-server Internet services”, Computer Standards & Interfaces,

Vol. 27, No. 1, pp. 39-51, November 2004.

[11] W.S. Juang, “Efficient multi-server password authenticated key agreement using smart

cards”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, pp. 251-255,

February 2004.

[12] X. Cao, and S. Zhong, “Breaking a remote user authentication scheme for multi-

server architecture”, IEEE Communications Letters, Vol. 10, No. 8, pp. 580-581,

August 2006.

52

[13] Y. Chen, C.H. Huang, and J.S. Chou, “Comments on two multi-server authentication

protocols”, http://eprint.iacr.org/2008/544, December 2008.

[14] Y.P. Liao, and S.S. Wang, “A secure dynamic ID based remote user authentication

scheme for multi-server environment”, Computer Standards & Interfaces, Vol. 31, No.

1, pp. 24-29, January 2009.

[15] Z.F. Cao, and D.Z. Sun, “Cryptanalysis and Improvement of User Authentication

Scheme using Smart Cards for Multi-Server Environments”, Proceedings of

International Conference on Machine Learning and Cybernetics, pp. 2818-2822,

August 2006.

53

Appendix A

(1) Why are they not “RC-off-line authentication” in [3, 6] ?

We have demonstrated this in Section 6.5 of Chapter 6.

(2) Why are they not “Increasing servers freely” in [1, 5, 8, 9, 10, 15] ?

In [1], RC stores Cu♁PWu in Uu’s smart card, where Cu=CRT(Ku1, Ku2,…, Kuk),

Kuj=H(IDu♁RKj), RKj =H(x, SIDj), j=1,…,k, and k is the number of servers. If one

server is added, all of the users have to get a new card for a new Cu.

In [5], RC computes lcmu=lcm(ru1,.., ruj,.., run), where 1≦j≦n, ruj=H(IDu, H(SIDj,x)),

and lcm(.) means the lowest common multiple of two or more numbers. He stores them

in Uu’s smart card as described in the registration phase of their scheme. If Uu wants to

access the newly added (n+1)th server, he has to re-register at RC for getting a new

lcmu. Therefore, their scheme increases the system’s card-issue cost.

In [8], TM (the trusted management server is similar to RC in our scheme) stores Cuj

in Uu’s smart card, where Cuj=H(IDu♁dsj)♁H(PWu) and dsj denotes the secret key of Sj.

If the number of servers is w, the number of Cuj stored in the card is equal w. Therefore,

when Uu wants to access a new added (w+1)th server, he has to go back to RC for

updating his smart card to contain Cu(w+1). This increases the system overhead.

In [9, 10], the CA (Central Authority is similar to RC in our protocol) uses all

servers’ secret keys to construct a Lagrange interpolating polynomial fu(X) for Uu and

stores fu(X) in Uu’s smart card as described in the user registration stage. Hence, if the

number of servers increases, CA has to issue a new card to Uu for him to obtain a new

54

polynomial fu(X) to log into the newly added server.

In [15], CIC (Card Initialization Center is similar to RC) stores Seru in Uu’s smart

card. Each bit of Seru represents a Uu’s access right parameter in each server. For

example, if Seru is 1000100, Uu is permited to access S3 and S7. Therefore, when a new

server is added into the system, each user’s Seru has to be changed. Hence, all users

have to get a new smart card for the new Seru.

(3) Why are they not “No assuming that all servers are trustworthy” in [2, 7, 15] ?

Chang et al. [2] assumed that RC and all servers in the system are trustworthy.

Hu et al.’s [7] is an improvement on Chang-Lee’s scheme. In Chang-Lee’s scheme, it

is assumed that RC and all servers are trustworthy. Hu et al. didn’t change this

assumption in their proposed scheme.

Cao et al. [15] pointed out that all servers should be trusted just like CIC, because

CIC shares the secret x with all servers. Hence, it means all servers in their protocol are

trustworthy.

(4) Why are they not “Low computationally intensive” in [9, 10] ?

For both of the schemes [9, 10] are based on Lagrange interpolating polynomial

which is computationally intensive as stated in [6].

(5) Why are they not “No verifier table in RC or any server” in [6, 11] ?

Since Tsai’s scheme [6] uses the verifier table, and in [11] states that “While Uu

registers at RC, RC has to send an authentication code Ewj(H(H(x, IDu), SIDj), IDu) to

each server Sj, where Ewj(m) denotes the ciphertext of m encrypted using the secret key

wj=H(x, SIDj). Then, each Sj has to store it in the verifier table for using H(H(x, IDu),

55

SIDj) to authenticate Uu.”.

(6) Why are they not “Mutual authentication” in [4, 9, 10, 15] ?

The proposed schemes in [4, 9, 10, 15] are not mutual authentication. Since the

server doesn’t respond to the user for the user to check if the server is the intended one.

The protocols [4, 9, 10] are only one pass schemes, a message from the user to the

server. It lacks the authentic message from the server to the user. Hence, the user can’t

authenticate the server.

The protocol [15] is three-pass. The message of the first pass is only UIDu, the

second a nonce N, and the third {Seru, C}. The former two messages in the first two

passes can’t be used to authenticate the user or the server. The last pass is used for the

server to authenticate the user. Hence, this scheme can’t let a user to authenticate the

server.

(7) Why are they not “Preventing insider-server spoofing attack” in [2, 6, 7, 14, 15] ?

Chang et al. [2], Hu et al. [7], and Cao et al. [15] each assume that all servers are

trustworthy. However, in the real word, this is usually not true. It will be vulnerable to

the insider-server spoofing attack if a legal server is malevolent and masquerades as

any other one.

Tsai’s scheme [6] is vulnerable to the insider-server spoofing attack as described in

Section 3.1 of Chapter 3.

Liao et al.’s scheme [14] suffers from this attack which Hsiang-Shih had pointed out

in [3]. We also pointed out it in [13].

(8) Why are they not “ Preventing off-line password guessing attack” in [4, 14] ?

56

In the proposed protocol [4], CM delivers the public parameters {SPj, (rj, sj), Kj} and

LS to the registered user Uu, where SPj=dj*rj+kj*sj, dj selected by CM is Sj’s secret key,

kj selected by CM is a random number, and LS is a line passing through the point (Kj,

Qj) which is also in the line Lj:fj(X)=Y passing through two points (Xj=IDu
ej, Yj=IDu

dj)

and (Dj=ej
IDu, Wj=ej

PWu). When Uu wants to login to Sj, Uu sends the login message

{IDu, (Kj, Qj), Zj, Aj, T, SPj, (rj, sj)} to Sj, where Zj= fj(Bj), Aj=gRan, Bj=ej
Ran*T and T is a

timestamp. Apparently, by eavesdropping on the message, attacker E can use the

extended Euclid's algorithm to obtain dj and kj if rj is relatively prime to sj. Then he can

compute the point (Xj=IDu
ej, Yj=IDu

dj). After obtaining the two points (Xj, Yj) and (Kj,

Qj), he can reconstruct the line Lj:fj(X)=Y. Hence, E can deduce the value ej
PWu by

computing ej
PWu =Wj = fj(ej

IDu) without guessing the user’s correct password PWu. This

weakness is more serious than the off-line password guessing attack.

It can be easily seen that Liao et al.’s scheme [14] suffers from the insider off-line

password guessing attack launched by either an insider server or insider user. We had

described this in [13].

(9) Why are they not “ Preventing parallel session attack” in [4, 9, 10, 14] ?

The protocols [4, 9, 10] each have only one pass, so they can’t withstand the parallel

session attack.

Liao et al.’s scheme [14] suffers from this attack which we had described in [13].

(10) Why are they not “ Preventing smart-card-lost attack” in [3, 4, 5, 7, 8, 9, 10, 14] ?

In these protocols, assume that an attacker E obtains the smart card and reads all the

secrets stored in the card. E can enforce a smart-card-lost off-line password guessing

57

attack on each scheme. We show them as follows.

In scheme [3], the smart card stores b, Vu=H(IDu, x)♁H(IDu, H(b, PWu)), and

Hu=H(H(IDu, x)). E can repeat with using his guessing PW’ to compute H(Vu♁H(IDu,

H(b, PW’))) and check to see if it is equal to Hu until he obtains the correct one.

Therefore, a smart-card-lost off-line password guessing attack can be launched.

In scheme [4], (Kj, Qj) is the intersection point of two line, LS and Lj. Lj is

constructed by two points (Xj=IDu
ej, Yj=IDu

dj) and (Dj=ej
IDu, Wj=ej

PWu). Therefore, an

attacker E can eavesdrop Uu’s two different points, (Ki, Qi) and (Kj, Qj), on LS from two

different login messages to reconstruct LS. Hence, he can have the Uu’s secret LS stored

in the smart card without stealing the smart card. The weakness is more serious than

the smart-card-lost attack.

In scheme [5], the smart card stores lcmu, Lu=h(lcmu,IDu)♁ H(PWu), where h(.) is a

hash function. E can repeat with using his guessing PW’ to compute Lu♁H(PW’) and

check to see if it is equal to h(lcmu, IDu) until he obtains the correct one. Therefore,

their scheme suffers from the smart-card-lost off-line password guessing attack.

In scheme [7], the smart card stores the values of G=H(x, IDu) and V=H(PWu) ♁G.

E can repeat with using his guessing PW’ to compute H(PW’)♁G and check to see if it

is equal to V until he obtains the correct one. Therefore, their scheme also suffers from

the smart-card-lost off-line password guessing attack.

In scheme [8], the smart card stores Cuj= duj♁H(PWu) and Duj= H(vuj)♁H(PWu). E

can send the login request { IDu, Cuj♁Duj} to the server Sj. Sj will respond {C1, C2, R1}

to E, where C1=a♁duj, C2=b♁H(vuj), R1=H(SIDj, f(H(vuj)), a), and f(x)=a*x++b. Then, E

58

can repeat with using his guessing PW’ to compute H(SIDj, a*x++b)= H(SIDj,

(C1♁Cuj♁H(PW’))*(H(vuj))++(C2♁Duj♁H(PWu)), C1♁Cuj♁ H(PW’)) and check to

see if it is equal to R1 until he obtains the correct one. Therefore, E can successfully

launch a smart-card-lost off-line password guessing attack.

In scheme [9], the smart card stores the values of U_Su=r 1/(PWu) and fu(X), where

fu(U_IDu)=gr. E can repeatly use his guessing PW’ to compute (U_S u) PW’ and check to

see if it is equal to fu(U_IDu) until he obtains the correct one. Therefore, their scheme

can’t resist a smart-card-lost off-line password guessing attack.

In scheme [10], the smart card stores U_Su= gr*d and fu(X), where fu(U_IDu)= gPWu* r,

e*d=1 mod ψ(n) and e is CA’s public key. E can repeat with using his guessing PW’ to

compute (U_S u)e* PW’ and check to see if it is equal to fu(U_IDu) until he obtains the

correct one. Therefore, a smart-card-lost off-line password guessing attack exists in

their scheme.

In scheme [14], the smart card stores Vu=H(H(IDu, x))♁H(IDu,PWu) and

Hu=H(H(IDu, x)). E can compute T’=Vu♁H(IDu,PW’), where PW’ is his guessing

password, and check to see if his computed H(T’) is equal to the stored Hu without the

help of any other entities. If the two values equal, the attack he launches succeeds. Else,

he can repeat the above password guessing attack until he obtains the correct one.

Therefore, a smart-card-lost off-line password guessing attack can be launched.

