
 i

南 華 大 學

資訊管理學系

碩士論文

具搜尋區域調適性之塔布基因演算法在零工式排

程問題上的應用

A Tabu Genetic algorithm with Search Area

Adaptation for the Job-Shop Scheduling Problem

研 究 生：王靜瑜

指導教授：邱宏彬

中華民國 九十五 年 六 月 三 日

 ii

 iii

誌 謝

 光陰似箭，兩年的研究生涯即將告一段落。回想起初進研究所

時，自己是這樣的懵懂無知，如今我能完成研究所的學業要感謝教導

過我的資管所所有老師，謝謝您們的辛勞教誨讓我能順利完成學業。

 很幸運能加入 204研究室這個大家庭，得到老師及眾多同學的幫

忙，大家教學相長、相互勉勵，使得我的研究生涯相當充實精采。尤

其感謝邱宏彬老師在學術研究及生活思想都给予我很大的啟發與思

考，讓我學會站在不同角度去看待事物。還有系助理：伊汝；學長姐:

建源、文天、琪雯、美倫；同學: 阿聰、琬蓉、施老師、大個、李老

師、富一，大家的支持與幫助，我才能有今天的小小成就。最後感謝

我的家人，有您們的鼓勵，我才能夠順利求學、畢業。謹以此文表達

我誠摯的謝意。

王靜瑜 僅誌於 嘉義
南華大學資訊管理學系

中華民國 九十五年 六月

 iv

具搜尋區域調適性之塔布基因演算法

在零工式排程問題上的應用

學生：王靜瑜 指導教授：邱宏彬

南 華 大 學 資訊管理學系碩士班

摘 要

零工式排程問題(Job shop scheduling problem, JSP)是個不斷被廣

泛研究的一項重要議題，並具有 NP-complete問題的特性。而遺傳演
算法(Genetic Algorithm, GA)是種常用於解決最佳化排程問題的演算
法，GA運用多點搜尋的方法使目標解得以多樣化，但須克服在搜尋
過程中過早收斂而落入區域最佳解(local minimum)的問題。因此本研
究以塔布遺傳演算法(TGA)為基礎搭配區域搜尋的機制，來找到 JSP
的最佳解，稱作改良式塔布遺傳演算法 (Modified Tabu genetic
algorithm, MTGA)。此方法在產生子代的交配過程中加入禁區(Tabu
list)的觀念去避免同系繁殖，更進一步以 Tabu search 的凌駕規則
(aspiration criterion)輔助子代的挑選，提升子代母體之強化性，再利
用自適性的突變方法(self-adaptive mutation)降低落入 local minimum
的機會。並以區域搜尋的機制加強區域搜尋能力找出最佳排程解。本

研究以標竿問題進行實驗，結果顯示 MTGA 和其他方法比起來具有
很優異的表現。

關鍵字：遺傳演算法、零工式排程問題、塔布搜尋。

 v

A Tabu Genetic Algorithm with Search Area Adaptation for

the Job-Shop Scheduling Problem

Student：Ching-Yu Wang Advisors：Dr. Hung-Pin Chiu

Department of Information Management
The M.B.A. Program
Nan-Hua University

ABSTRACT

The job-shop scheduling problem is the important issues to the
research of optimal problems. Besides, tabu search is also applied to GA,
called TGA for traveling salesman problem (TSP) that has better
effectiveness than GA [6]. Thus, this is an interest and important research
area for job-shop scheduling problem with TGA. In this paper, we try to
discuss this issue.

According to the TGA, it maintains diversity through broad-sense
incest prevention. Therefore, the solutions can contain theirs diversity and
prevent premature convergence. But in JSP problem, the crossover and
mutation manners of TGA cannot produce the better solutions than GA.
So we modified the crossover and mutation phases of TGA called
modified TGA (MTGA). First, the modified crossover search phase uses
a threshold (THc) to control the times of crossover for improving the
qualities and convergence of solutions. Second, the mutation search phase
use two parameters to control the selected points and the times of
mutation in order to make the global search wildly and prevent to drop
into local minimum more easily. And the experiments results demonstrate
the superiority of MTGA in job-shop scheduling problems. Not only
balance intensification, but also diversification.

Keywords: Genetic algorithm, Job-shop scheduling problem, Tabu

search.

 vi

List of Contents
Chapter 1 Introduction ...1

1.1. Job-shop scheduling problem (JSP)..2

Chapter 2 Literature review ...4

2.1 Genetic Algorithm for Job-shop Scheduling Problem..................4

2.2 Tabu Genetic Algorithm (TGA)...6

2.2.1 Tabu List.. 11

2.2.2 Aspiration criterion ..12

2.2.3 Self-adaptive mutation...12

Chapter 3 Modified TGA for Job-shop scheduling problem...................14

3.1 Tabu genetic algorithm for JSP..14

3.1.1 Designing chromosomes..14

3.1.2 Calculating fitness value ..15

3.1.3 Tabu list ...15

3.1.4 Crossover...16

3.1.5 Mutation ..18

3.2 Modified TGA...18

3.2.1 Modified crossover search phase21

3.2.2 Modified mutation search phase22

Chapter 4 Performance evaluation ...23

4.1 Tabu list...23

4.2 Performance comparison ...25

Chapter 5 Conclusion...27

References ...28

 vii

List of Tables
Table 1-1.：Example of 3×3 JSP problem……………….….……...…..…3

Table 1-2.：Computation-based and Memory-based mating………….…..8

 viii

List of Figures
Figure 1-1.：A Chromosome of 3×3 JSP problem……………...………...3

Figure 2-1.：Flowchart of simple genetic algorithm …………………….5

Figure 2-2.：Flowchart of TGA………………………………………….10

Figure 3-1.：Example of representation for JSP…………………………15

Figure 3-2.：Update the tabu list………………………………………...16

Figure 3-3.：Example of crossover in TGA for JSP...……………...……17

Figure 3-4.：Example of mutation in TGA for JSP……………………...18

Figure 3-5.：Flowchart of MTGA……………………………………….19

Figure 4-1.：Comparison of tabu list parameter in TGA (10×10)……….24

Figure 4-2.：Comparison of deadlock in TGA (10×10)…………………24

Figure 4-3.：Comparison GA, TGA, TGA* and MTGA (10×10)………26

Figure 4-4.：Frequency distribution of makespan (10×10)……………...26

 1

Chapter 1 Introduction
Current market trends, shorter product life cycles and competitive pressure

to reduce costs have resulted in the need for zero inventory systems. In order

to maintain market share, the system must be fast responding which implies

that more stock has to be maintained. These conflicting requirements demand

efficient, effective and accurate scheduling which is complex in all but the

simplest production environment [2]. So, scheduling problems need to be

solved by good scheduling algorithms and heuristics. Job-shop scheduling

problem (abbreviated to JSP) is one of the hardest well-known combinatorial

optimization problems. The problem is an allocation of the operations to time

intervals on the machines, in order to find a minimum makespan.

Genetic algorithms (GAs) are well-known heuristic algorithms and have

been applied to solve a variety of complicated problem. In recent years, there

is an interest of in using genetic algorithms for solving JSP [16, 18, 13]. GA

has shown a good performance regarding its ability to search globally. It

searches multiple points in the search space of population. It also uses a

crossover operator that enables to search wider region. The diversity in GA is

attributed to the form of population, which contains a certain number of

encoded individuals for population. Therefore, heuristic algorithms pursue a

good balance between exploration and exploitation in consideration of both

convergence speed and optimized solution quality. However, in the

conventional GA, parents are approved without any further examination after

they are chosen at random or just by fitness. So, it’s hard to prevent the

ancestry mating and control the solution quality.

 2

In this research, we adapt tabu genetic algorithm, (TGA), for solving JSP

problem. Furthermore, to modify tabu genetic algorithm, called MTGA that

with local search mechanisms in crossover and mutation search phases to

contain the diversification and intensification of solutions. Finally, using

several experimental results to prove MTGA has better performance than GA

and TGA.

In this paper, we try to discuss this issue and its organized as follows. In

section2, we review relevant literature related to our study. In section 3, we

modified TGA, called MTGA for JSP and explained the process in detail. In

section 4, evaluate and discuss the experimental results with our research.

Finally, conclusions and future works are summarized in section 5.

1.1. Job-shop scheduling problem (JSP)

In general, the classical JSP can be stated as follows [12]: There are n

different jobs and m different machines to be scheduled. Each job is

composed of a set of operations and the operations order on machines is

prespecified. The required machine and the fixed processing time characterize

each operation. There are numerous constrains on jobs and machines:

(1) A job does not visit the same machine twice.

(2) There are no precedence constrains among the operations of different jobs.

(3) Operations cannot be interrupted.

(4) Each machine can process only one job at a time.

(5) Neither release times nor due dates are specified.

The problem is to determine the operation sequences on the machines for

 3

minimizing the makespan, and the time is necessary to complete all jobs. An

example of the three-job three-machine (3×3) JSP problem is presented in

Table 1-1.

Table 1-1. Example of 3×3 JSP problem

A chromosome has gene information that shows the order of the

job-number for solving the problem in GA. If the number of jobs is n and the

number of machines is m, the chromosome consists of n × m genes. Each job

must be depending on an order relation; it will appear m times exactly. Thus,

each chromosome represents a feasible solution. In a 3×3 job-shop scheduling

problem, 9 genes denote a chromosome, ‘1’ shows job1 (J1), ‘2’ shows job2

(J2), ‘3’ shows job3 (J3), respectively. Each gene, operation (Op), is given

priority from left to right. Therefore, a left gene has higher priority than right

one. An example of a chromosome in a 3×3 job-shop scheduling problem is

shown in Figure 1-1.

 Operation (machine number /processing time)

Job Op1 Op2 Op3

J1 1 / 3 2 / 3 3 / 2

J2 1 / 1 3 / 5 2 / 3

J3 2 / 3 1 / 2 3 / 3

2 1 3 3 2 1 3 2 1

Figure 1-1. A Chromosome of 3×3 JSP problem

Chromosome

 4

Chapter 2 Literature review

2.1 Genetic Algorithm for Job-shop Scheduling Problem

Genetic algorithm (GA) is one of the stochastic search algorithms based

on biological evolution. In order to solve a clearly defined problem and an

offspring represented the candidate of solutions. GA is according to crossover

and mutation operators with their probabilities to produce a set of offspring

chromosomes. A basic GA flowchart can be showed in Figure 2-1 [19]. As we

know, GA likes an over and over process, an iteration is called a generation. A

run means the whole set of generations. We try to find one or more highly fit

chromosomes.

Recently, there have more and more papers used hybrid GA to solve

optimum problem. Because of GA provides quite simple structure, process

and it has strong abilities of solving and searching. Furthermore, GA searches

multiple points in search space of population by evolution of generations and

characteristic of search randomly. The abilities can avoid GA dropping in the

local optimum and toward the global optimum. Whitley [9] introduced

designing GA has two important issues: selection pressure and population

diversity. Selection pressure leads GA to exploit information from the fitter

individuals and produces more superior offspring iteratively. The diversity in

GA is concerned about the population, which contains a certain number of

encoded individuals for exploration. Therefore, we must to find a good

tradeoff between exploration and exploitation consideration of both

convergence speed and optimized solution quality.

 5

Start

Generate a population of chromosomes (N) : X1, …, XN

Calculate the fitness of each chromosome : f(X1), …, f(XN)

Start

Is the termination
criterion satisfied?

Select a couple of chromosomes for mating

No

With the crossover probability PC, exchange parts of the
two selected chromosomes and create two offspring

Randomly change the values of genes in the two offspring
chromosomes with the probability PM

Replace the offspring in the new population

Is the termination
criterion satisfied?

In place of the current chromosome population with new
population

Yes

Stop

No

Yes

Figure 2-1. Flowchart of simple genetic algorithm

 6

Masato etc. [18] proposed the modified GA with search area adaptation

(mGSA) for solving JSP that does not need such crossover operator in GSA.

Goncalves etc. [13] presented a hybrid genetic algorithm for the job-shop

scheduling problem. It used the chromosome representation of the problem is

based on random keys. The scheduled used a priority rule in which are

defined by GA.

2.2 Tabu Genetic Algorithm (TGA)

Fred Glover (1989) [11] proposed TS that is a strategy for solving

combinatorial optimization problems. In this section, we display TS in a

simple form of its conceptions. TS constrains the search by classifying certain

of its moves as forbidden and to free the search by a short-term memory

function. And utilize aspiration criteria to override the tabu restriction that

allow superior solution. In TS, the tabu restrictions and aspiration criteria

played a dual role in constraining and guiding the search process. Besides, it

uses memory function to record the moving trajectories. According to the

used memory structure, we classify these approached into two major

categories: computation-based and memory-based mating strategies [6].

Computation-based approach is the most common way to distinguish the

degree of conformity among individuals. It is adapting hamming distance be

the metric to calculate genotype or phenotype characteristics, and then mate

the individuals by different strategies. It has been shown to maintain

population diversity and improve the solution. However, memory–based

schemes do not require extra computation to measure similarity. And it can

 7

prevent premature convergence and reduce computational overhead in

determining bloodline. They are reviewed in Table 2-1.

Ting, Li and Lee proposed tabu genetic algorithm [6], which by

incorporates the feature of TS into GA’s selection. TGA integrates the tabu list

to prevent inbreeding so that population diversity can be maintained, and

adapts the aspiration criterion to provide moderate selection pressure. Then it

utilizes the self-adaptive mutation to overcome the hard of deciding mutation

rate. It uses the classic traveling salesman problem (TSP) as a benchmark to

verify the effectiveness of the proposed algorithm.

The main emphases are bellows:

ü The memory structure of TS: In order to control the diversity of

subpopulation and avoid the condition of inbreeding, it use tabu list to

record the search trajectory.

ü Under the restrictions of tabu list: TGA can apply the aspiration criterion

to support the subpopulation intensively and diversely.

ü Utilizing self-adaptive mutation: According to the situation of population

change the mutation dynamically to prevent the performance made by

fixed mutation rate.

The presented TGA is according to the structure of evolution of GA and

the restrictive features of TS. At the first, selecting parents of TGA is the same

with normal GA. At the same time the search strategy of TS to expand the

obvious characteristics of both algorithms. The flowchart of TGA is showed

in Figure 2-2 [6]. If the part of TS, highlighted in gray, is ignored, TGA

becomes into a simple GA. It means that the reproductions of GA needed to

be supervised by the elements of TS.

 8

Table 2-1. Computation-based and Memory-based mating

 Property Method

Computation-
based mating

Distinguish
individuals’
similarities

(Using hamming
distance to measure
similarity between to
individuals.)

Suggest the clearing policy. [1]

Employ the concept of incest
prevention. [14]

Negative assortative mating. [3]

Choosing different crossover
method. [20]

The phenotypic assortative mating.
[25]

Different assortative mating
strategies. [5]

Allowance of mating by a normal
function of the normalized fitness.
[15]

Memory-based
mating

Record the results of
mating

(Memory structure is
appended to
individuals to enable
their ancestry to be
recognized.)

The family tree to disallow incest by
adhering to the ancestry-based incest
law. [22]

Ancestry table upon GA with
variable population size. [3, 4]

Devised three subpopulation
schemes to control mating. [26]

The race genetic algorithm. [7]

The genetic algorithm with
chromosome differentiation.[23, 24]

On the harmonious mating strategy
through tabu search. [6]

 9

After being produced by genetic operators, each pair of offspring went

through these restricts of TS, tabu list and aspiration criterion, to confirm that

their parents are allowed to mate. When the mating is allowed to mate or is

good enough to meet the aspiration criterion, it is grouped into acceptable and

the offspring are reserved for the subpopulation. Otherwise, the offspring are

rejected and the process returns to select a mate. The process is repeated until

the mating is acceptable. If the number of experiments exceeds a predefined

threshold, this condition is thought as a Deadlock. Then the selected mate will

be mutated. They are regarded as acceptable mate, and delivered to

subpopulation.

All the researches have indicated that genetic algorithm and job-shop

scheduling problem are the important issues to the research of optimal

problems. Besides, tabu search is also applied to GA, called TGA for

traveling salesman problem (TSP) that has better effectiveness than GA [6].

Thus, this is an interest and important research area for job-shop scheduling

problem with TGA.

 10

Tabu Search

TGA1. Initialization

TGA2. Evaluation

TGA3. New generation

TGA4. Select parent. 1

TGA5. Select parent. 2

Yes

Yes

No

TGA10. Mutation
TGA13. Evaluation

TGA complete

No

No

TGA12. Survive

Yes

No

TGA6. Crossover

TGA7. Tabu?

TGA8. Aspiration?

TGA9. Deadlock?

TGA11. Sub-population
filled?

Yes

Yes

TGA14. Termination?

Figure 2-2. Flowchart of TGA

 11

2.2.1 Tabu List

The contribution of tabu list in TGA is to prevent incest in a

memory-based manner. Each successful mating in GA is regarded as a move

in TS, thus it’s the same with tabu list in TS to prevent some moves be

trapped in local optimum. TGA employs it to track reproduction and forbid

incest. The selection is monitored and restricted by tabu list, just like the

move in TS. So the clans of mating parents will record in tabu list of the other

side. The following function 1 can defined the two chromosomes Ci（Gi ,λi, Ti）

and Cj（Gj ,λj, Tj）are tabu [6].

In TGA, after a successful mating, the parents update their tabu list with

the mate’s clan, so that the mating history can be traceable. The offspring

inherit the clan and updated tabu list entirely from one of the parents, rather

than from a combination of both parents.

The size of tabu list is proportional to the size of the population, and can

be defined as function 2 [6]:

NT is the size of the tabu list; δ is the parameter of proportionality

(0≤δ< 1), and N is the size of the population. So a large population will

accompanies a large tabu list. Thus, a bigger parameter of proportionality

NT = δ × N （2）

 true, if λi ∈ Tj or λj ∈Ti,

Tabu（Ci, Cj）= （1）

 false, otherwise.

 12

tightens the restriction and the searches focus on exploration. On the contrary,

a smaller one loosens the restrictions and supports the search exploitation.

However, if the parameter closes to zero, TGA degrades into GA.

2.2.2 Aspiration criterion

The aspiration criterion is another way to measure the mating. It is

designed to permit the better solution overthrow the tabu restrictions. If the

fitness of the offspring (Ci
’) is Fi

’ and the best solution as so far is S; then the

aspiration criterion is defined as function 3 [6].

If the mating parents are trapped in tabu, their fitness of offspring is better

than the best solution as so far. The offspring able to regardless of tabu

restrictions. Therefore, aspiration criterion supports intensification under the

consideration of diversification. So that, it can harmonizes he selection

pressure and population diversity.

2.2.3 Self-adaptive mutation

In natural environment, the probability of mutation is not fixed. In order to

adapt to the changing environment, organisms mutate by themselves. In GA,

there is usually given a mutation rate of fixed probability. This manner cannot

reflect the truly of nature condition. So TGA use self-adaptive mutation to

imitate organism mutation in natural environment.

 true, if Fi
’ ＞ S,

Aspiration（Ci
’）= （3）

 false, otherwise.

 13

In the TGA, the population of diversity is too low to achieve an acceptable

parents, the selection will be repeated indefinitely, causing a dead lock.

Technically, the number of clans or the diversity shrinks with evolution. In

order to prevent this condition, we use threshold (TH) to restrict the number

of repeated trial mating. Deadlock is defined as function 4 [6].

 true, if r ≥ TH,

Deadlock = （4）

 false, otherwise.

 14

Chapter 3 Modified TGA for Job-shop scheduling

problem

3.1 Tabu genetic algorithm for JSP

3.1.1 Designing chromosomes

A chromosome has genes information for solving problem in GA.

However, in TGA, a clan number represents identification, it appended to

each chromosome with tabu list in the course of recording the clans of

offspring after evolution. The process will complete the TS strategy. So, a

chromosome in TGA is showed in three parts, （G ,λ, T）, which G is a set of

normal genes; λ is a clan number of chromosome, and T is a set of tabu list.

The genes information used the operation-based representation [21]. It

encodes a schedule as a sequence of operations and each gene stands for one

operation. Gene is given priority from left to right. Therefore, a left gene has

higher priority than right one. At the initialization stage, a clan number is

assigned uniquely. The offspring will inherit the clan number from one of

their parents. If there are the same clans in the population, it means they are

from the same ancestry. The tabu list records several numbers of clan to

prevent inbreeding. It shows in Figure 3-1 that such a chromosome structure

presents an example of 3×3 job-shop schedule, an additional clan (6) and tabu

list (4, 7).

 15

3.1.2 Calculating fitness value

In normal, the chromosomes are selected when the fitness values are

bigger. That means the fitness value is bigger, the probability of being chosen

is higher. However, the JSP problem is better with smaller makespan. So the

makespan is transferred into the fitness value as follow [8]:

f(x) represents fitness value; Cmax represents the max makespan; g(x)

represents makespan.

3.1.3 Tabu list

The operator of updating the tabu list works like a queue. A new clan

forbidden to mate will insert into the tabu list. If the tabu list is full, all the

clans in it will shift to the right position. The last clan will be released from

the tabu list, and regains the qualification to be mated. Figure 3-2 illustrates

the operation of updating the tabu list in TGA.

genes (operations for JSP) clan tabu list

6 4 7 3 1 3 2 1 1 2 2 3

Figure 3-1. Example of representation for JSP

 Cmax – g(x), when g(x) < Cmax

f(x) ＝ （5）

0, otherwise.

 16

3.1.4 Crossover

There are a pair of parents be selected randomly from population. When

they crossover, the process can be divided into two parts at the same time, the

process is showed in Figure 3-3. The one part is genetic operators on the

genes as in the normal GA, and the other one is update clan and tabu list by

the TS restrictions.

First of all, introducing the genes part, a pair of parents think as PA and PB

that two crossover points are selected randomly and look at the middle parts

of genes present AP1 and BP1. Find the same genes in different locations from

AP2 and BP2 and exchange them and their locations. They are became AC1 and

BC1. After that, we assign the different genes from AP1 in AC1 respectively, so

do the BP1 in BC1. The middle parts of offspring showed in AC2 and BC2. Then,

the outside parts of two points are appended to AC2 and BC2 from PA and PB.

The offspring are presented as CA and CB. This processing can make the

offspring to keep the diversity but not go against the restrictions of JSP.

Figure 3-2. Update the tabu list

 6 4 7 3 1 3 2 1 1 2 2 3 8

 6 4 7 3 1 3 2 1 1 2 2 3

8

9

Insert tabu clan

Move

9

Release

 17

Figure 3-3. Example of crossover in TGA for JSP

genes
clan

2 3 3 1 1 2 3 2 1
PB

2 2 1 1 2 3 1
AP1

3 3 1 1 2 3 2
BP1

3 2 2 1 1 2 3 1 3 7 5 1 3

3 2 2 1 1 2 3 1 3
PA

2 2 1 1 3
AP2

3 1 1 2 2

BP2

3 1 1 2 2
AC1

2 2 1 1 3
BC1

3 2 1 1 2 1 2
AC2

3 2 1 1 3 3 3
BC2

CA
3 3 2 1 1 2 1 2 3

CB
2 2 2 1 1 3 3 3 1

Parent A
3 2 2 1 1 2 3 1 3 5 4 2
Parent B
2 3 3 1 1 2 3 2 1 7 1 3 6

after reproduction
3 2 2 1 1 2 3 1 3 5 7 4 2

5 4 2 7 1 3 6

Tabu?

Tabu?

updated
 tabu list

5 7 4 2 7 5 1 3

update tabu

3 3 2 1 1 2 1 2 3 5 7 4 2
Child A

2 2 2 1 1 3 3 3 1 7 5 1 3
Child B

genes

clan

 18

3.1.5 Mutation

The mutation process is that selection two genes from a chromosome

randomly, then exchange the two genes. After mutation, the chromosome is

viewed as a newborn and is assigned a new clan number. The example of

mutation process in TGA for JSP is presented in Figure 3-4. This mutation

operator is given for the population to make up for the lack of diversity. Thus

the characteristics of dynamic adaptation in response to population conditions

are expected to enhance performance.

指派一個新的 clan

 6 4 7 3 1 3 2 1 1 2 2 3

 9 3 1 2 2 1 1 3 2 3

Chromosome

Mutation

New chromosome

Figure 3-4. Example of mutation in TGA for JSP

3.2 Modified TGA

In TGA for JSP, the results and effectiveness of experiments is not as good

as the algorithm for TSP. It inherits the property of diversity, but it can’t take

the balance between diversification and intensification. Thus, we modified

crossover and mutation search phases of TGA, called modified TGA (MTGA)

to improve ability of local search and extend search area. And try to

convergent solutions under the diversity. The flowchart of MTGA is showed

in Figure 3-5.

Assign a new clan

 19

Tabu Search

MTGA11. Mutation

MTGA10.Crossover Processing

MTGA1. Initialization

MTGA2. Evaluation

MTGA3. New generation

MTGA6. Tabu?

MTGA8.
Aspiration?

MTGA4. Select Parent A
(choice the best)

MTGA5. Select Parent B
(Random)

MTGA9.
Deadlock? (TH)

No

(a) Select crossover
points (Random)

No

Yes

Yes

No

(1) Select mutation
points (Random)

No

(2) Mutation

(3) < Threshold ?
(THm)

Yes

No

MTGA12.
Subpopulation filled?

No

MTGA13. Evaluation

MTGA Complete

MTGA14.
Termination?

Yes

No

Yes

MTGA Start

Yes

(d) < Threshold ?
(THc)

(c) Evaluation
Parent < Child

(b) Crossover

MTGA7. Crossover

Yes

Yes

No

Figure 3-5. Flowchart of MTGA

 20

Based on the above definitions and discussion, the modified algorithm

MTGA is formulated as follows.

Algorithm MTGA. Assume that the population P consists of N

chromosomes C1,…, CN, with fitness F1,…, FN , respectively. The best fitness

S is recoded in each generation t. The genetic operators are performed to

produce offspring C’1,…, C’N, and the deadlock criterion TH is defined to

prevent infinite loop. The algorithm terminates at tmax generations, at which

point the obtained best fitness S is the optimized result.

MTGA1. [Initialization.] Set t ß 0, and initialize population Pt.

MTGA2. [Evaluation.] Evaluate population Pt and result in F1,…, FN. Set S

ß max (F1,…, FN).

MTGA3. [New generation.] Set n ß 0 and r ß 0. (Where n is the number of

produced offspring, and r is the repeated times of deadlock.)

MTGA4. [Select Parent A.] Set i ß the best (1,…, N). (Select parents Ci.)

MTGA5. [Select Parent B.] Set j ß random (1,…, N). (Select parents Cj.)

MTGA6. [Tabu?] If Tabu (Ci, Cj) = false, go to step MTGA10. (Check

parents Ci and Cj to see if they are forbidden to mate.)

MTGA7. [Crossover.] (C’i, C’j) ß Crossover (Ci, Cj).

MTGA8. [Aspiration?] If Aspiration (C’i, C’i) = true, go to step MTGA12.

MTGA9. [Deadlock?] Set r ß r + 1. If r < TH, go to step MTGA5, otherwise,

go to step MTGA11.

MTGA10. [Crossover processing.] Set count_1 ß 0, and THc is the repeated

times of crossover.

(a) Select crossover points randomly.

 21

(b) (C’i, C’j) ß Crossover (Ci, Cj).

(c) If (Fi,…, Fj) < (F’i, F’j), go to step MTGA12.

(d.) Set count_1 ß count_1 + 1. If count_1 < THc, go to step (a.).

Otherwise, go to step MTGA12.

MTGA11. [Mutation Processing.] Set count_2 ß 0, and THm, is the repeated

times of mutation.

(1) Select mutation points randomly.

(2) (C’i, C’j) ß Mutation (Ci, Cj).

(3) Set count_2 ß count_2 + 1. If count_2 < THm, go to step (1).

Otherwise, go to step MTGA12.

MYGA12. [Subpopulation filled?] Insert the offspring Ci and Cj into Pt+1, and

set n ß n + 2. If n < N, set r ß 0 and return to step MTGA4.

MTGA13. [Evaluation.] Set Pt+1 ß Survive (Pt, Pt+1) and t ß t + 1.

Evaluation population Pt, and set S ß max (F1,…, FN).

MTGA14. [Termination?] If t < tmax, return to step MTGA3. Otherwise, the

algorithm MTGA is complete.

3.2.1 Modified crossover search phase

In TGA, the crossover phase has to obey the tabu restrictions, so it

maintained the diversity of population. However, it will due to the insufficient

convergence, for this reason, the modified crossover search phase uses a

threshold (THc) to control the times of crossover. If the children are better

than the parents, they survived in subpopulation. Otherwise, the parents repeat

to crossover until the times of crossover equal to the threshold, and keep the

last offspring to the subpopulation. It’s shown in Figure 3-1 of crossover

 22

processing.

About diversity issue, TGA had good performance in it. But in TGA

crossover phase, it’s crossover one time, then delivery the offspring in

subpopulation. It’s a consequence on the lack of convergence. Therefore, we

utilize the times of crossover to do some local search for improving the

solutions qualities and converging faster.

3.2.2 Modified mutation search phase

Mutation operator is in order to adapt evolution environment and adjust it

dynamically. But the chromosomes mutate by two selected points that are still

too hard to outleap the local minimum. Hence, we added a mechanism in

mutation processing. For example, assume a parameter set as 10, a pair from

1 to 10 be selected the mutation points randomly. This manner is in the course

of making the global search wildly. It’s also preventing to drop into local

minimum more easily. After mutation, next step is another mechanism that

controls the times of mutation by a threshold (THm). Finally, the best

chromosomes are sent to the subpopulation. It’s shown in Figure 3-1 of

mutation processing.

 23

Chapter 4 Performance evaluation
In our research, several comprehensive experiments are conducted to

evaluate the performance of TGA and MTGA in JSP. We apply ft 10, 10×10,

benchmark problem which has received the greatest analysis is the instance

generated by Fisher and Thompson [10]. Lawler et al [17]. report that within

6000 s when applying a deterministic local search to ft 10 more than 9000

local optima have been generated with a best makespan value of 1006,

furthermore emphasizing the difficultly and hardness of this problem. Besides,

several researches proved that the optimal makespan is 930 of ft 10.

4.1 Tabu list

The impact of the size of tabu list on the performance of TGA is

considered. The parameter of proportionality, δ, determining the size of tabu

list, is experimentally changed from 0.1 to 0.5. A population size (N = 50),

(generation= 500) and deadlock (TH= 10) are simulated. Each parameter runs

20 times and then takes the best solutions for experiment result. The

convergence of each parameter can be showed in Figure 4-1.

By the number of parameter increased, the convergence is decreasing.

When the parameters are 0.1 to 0.3, the convergences are still having the

suspicion of premature convergence. But when the parameters are 0.4 and 0.5,

the convergences are slower and slower. In these conditions can observe that

the utility of tabu list can prevent premature convergence.

 24

Figure 4-1. Comparison of tabu list parameter in TGA (10×10)

Figure 4-2 plots the function of deadlock with the tabu list parameter = 0.4.

The mutation probability is controlled by deadlock. When the deadlock is

lower, the mutation probability is higher. In Figure 4-2, the deadlock higher

than 20, TGA is trapped into premature convergence. However, the deadlock

is slower and then mutation rate become higher. So the speed of convergence

will slow down.

Figure 4-2. Comparison of deadlock in TGA (10×10)

1000

1050

1100

1150

1200

1250

1300

1350

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
0

δ= 0.1

δ= 0.2

δ= 0.3

δ= 0.4

δ= 0.5

1100

1150

1200

1250

1300

1350

1 61 12
1

18
1

24
1

30
1

36
1

42
1

48
1

TH = 10

TH = 20

TH = 30

TH = 40

TH = 50

 25

4.2 Performance comparison

In this experiment, we apply GA, TGA, TGA* (Selected the best

chromosome as one of the parents, the other one selected randomly.) and

MTGA to ft 10 JSP problem as a case. In TGA, TGA* and MTGA, the

population size (N) is set to 100, the tabu list parameter is set to 0.4 and the

deadlock is set to 20. In GA, the population size is set to 100, crossover rate =

0.5, and mutation rate = 0.15.

The performance experimental results are decomposed into two parts:

MTGA is compared with GA, TGA and TGA*. And compared the frequency

distribution of GA, TGA, TGA* and MTGA. In Figure 4-3, we can see that

the performance of GA outperforms TGA. Although, TGA prevents premature

convergence, but the qualities of solutions are not good enough. It’s because

that parents are selected by random. It leads the solution easier drop in local

minimum. Thus, in TGA*, one of the parents choose the best chromosome in

the population, the other one is selected by random. The qualities of solutions

can be proved a lot. However, the performance of MTGA outperforms TGA*,

the reason is that MTGA adapted location search in crossover and mutation

search phases. It contains the good solutions in TGA* and also do local search

in the good area that made the performance better. So the efficiency is

obvious to the modified operator of crossover and mutation of MTGA and

also found the optimal solution 930.

 26

Figure 4-3. Comparison GA, TGA, TGA*and MTGA (10×10)

Figure 4-4 shows the frequency distribution of results, respectively. It is

shown here that the distribution of MTGA has width narrower and the

solutions are better than GA, TGA and TGA*. Therefore, it is confirmed that

MTGA shows better performance than GA and TGA.

0

5

10

15

20

25

30

93
0

96
0

99
0

10
20

10
50

10
80

11
10

11
40

11
70

12
00

12
30

Makespan

F
re

qu
en

cy

GA

TGA

MTGA

TGA*

Figure 4-4. Frequency distribution of makespan (10×10)

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1
35

1
70

1
11

01
14

51
18

01
21

51
25

01
28

51

Generation

M
ak

es
pa

n GA

TGA*

TGA

MTGA

 27

Chapter 5 Conclusion
This research apply TGA to 10×10 JSP problem, it maintains diversity

through broad-sense incest prevention by tabu list. Therefore, the solutions

can contain theirs diversity. It also can prevent premature convergence by

deadlock. But in JSP problem, the crossover and mutation manners of TGA

cannot produce the better solutions than GA. So we modified the crossover

and mutation phases of TGA called modified TGA (MTGA). First, the

modified crossover search phase uses a threshold (THc) to control the times of

crossover for improving the qualities and convergence of solutions. Second,

the mutation search phase use two parameters to control the selected points

and the times of mutation in order to make the global search wildly and

prevent to drop into local minimum more easily. And the experiments results

demonstrate the superiority of MTGA in job-shop scheduling problems. Not

only balance intensification, but also diversification. Furthermore, it finds out

the optimal makespan 930.

 28

References
[1] A. Petrowski, A new selection operator dedicated to speciation, in:

Proceedings of the Seventh International Conference on Genetic

Algorithms, 1997, pp. 144–151.

[2] A. S. Jain and S. Meeran. Deterministic job-shop scheduling: Past, present

and future. European Journal of Operational Research 113, 1999, 390-434.

[3] C. Fernandes, A. Rosa, A study on non-random mating and varying

population size in genetic algorithm using a royal road function, in:

Proceedings of IEEE Congress on Evolutionary Computation, Seoul,

South Korea, 2001.

[4] C. Fernandes, R. Tavares, A. Rosa, niGAVaPS––Out breeding in genetic

algorithms, in:Proceedings of the 2000 ACM Symposium on Applied

Computing, 2000, pp. 477–482.

[5] C. Fernandes, R. Tavares, C. Munteanu, A. Rosa, Assortative mating in

genetic algorithms for vector quantization problems, Proc. ACM SAC,

2001, 361–365.

[6] Chuan-Kang Ting, Sheng-Tun Li, Chungnan Lee. On the harmonious

mating strategy through tabu search, Information Sciences 156, 2003,

189-214, .

[7] C. Ryan, Racial harmony and function optimization in genetic

algorithms––The races genetic algorithm, in: Proceedings of EP’95. The

MIT Press.

[8] D.E. Goldberg, Genetic algorithm: in search, Optimization and Machine

Learning, Addision-Wesley Publishing Co, 1989.

 29

[9] D. Whitley, The GENITOR algorithm and selection pressure: Why

rank-based allocation of reproductive trials is best, in: Proceedings of 3rd

International Conference on Genetic Algorithms, San Mateo, CA, 1989,

pp. 116–121.

[10] Fisher, H., Thompson, G.L., Probabilistic learning combinations of local

job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (Eds.),

Industrial Scheduling. Prentice-Hall, Englewood Cliffs, NJ, 1963, pp.

225-251.

[11] Fred Glover. Tabu Search－Part I. Operation Research Society of

America, 1989.

[12] Gen, M., & Cheng, R.. Genetic algorithms and engineering design. New

York: Wiley, 1997.

[13] Goncalves, Mendes and Resende. A hybrid genetic algorithm for the job

shop scheduling problem. European Journal of Operational Reseach 167,

2005, 77-95.

[14] H. Shimodaira, DCGA: a diversity control oriented genetic algorithm,

IEEE International Conference on Tools with Artificial Intelligence, 1997,

pp. 367–374.

[15] I. Chakraborty, B. Chakraborty, Ideal marriage for .ne tuning in GA, in:

Proceedings of IEEE International Conference Systems, Man, and

Cybernetics, vol. 1, 1999, pp. 631–636.

[16] L. Davis. Job shop scheduling with genetic algorithm. In Porc. of the First

Int. Conf. on Genetic Algorithms (Edited by J. Grefenstette), pp. 136-140.

Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.

 30

[17] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.,

Sequencing and scheduleing: Algorithms and complexity. In: Handbook

in operations Research and Management Science 4: Logistics of

Production and Inventory, 1993.

[18] M. Watanabe, K. Ida and M. Gen. A genetic algorithm with modified

crossover operator search area adaptation for the job-shop scheduling

problem. Computers & Industrial Engineering 48, 2005, 743-752.

[19] Michael Negnevitsky, Artificial Intelligence A Guide to Intelligent

Systems (Second Edition) , 2005, 219-228.

[20] R. Bian, Z. Chen, Z. Yuan, Improved crossover strategy of genetic

algorithms and analysis ofits performance, in: Proceedings of the Third

World Congress on Intelligent Control and Automation, 2000, pp.

516–520.

[21] Runwei Cheng, Mitsuo Gen and Yasuhiro Tsujimura. A tutorial survey of

job-shop scheduling problems using genetic algorithms － I.

Representation. Computers ind. Engng Vol. 30, No. 4, pp. 983-997, 1996.

[22] R. Craighurst, W. Martin, Enhancing GA performance through crossover

prohibitions based on ancestry, in: Proceedings of the Sixth International

Conference on Genetic Algorithms, 1996, pp. 130–135.

[23] S. Bandyopadhyay, S.K. Pal, Incorporating chromosome differentiation in

genetic algorithms, Informat. Sci. 104, 1998, 293–319.

[24] S. Bandyopadhyay, S.K. Pal, Pattern classification with genetic

algorithms: Incorporation of chromosome differentiation, Pattern Recogn.

Lett. 18, 1997, 119–131.

 31

[25] S. De, S.K. Pal, A. Ghosh, Genotypic and phenotypic assortative mating

in genetic algorithm, Inform. Sci. 105, 1998, 209–226.

[26] W.M. Spears, Simple subpopulation schemes, in: Evolutionary

Programming Conference, 1994, pp. 296–307.

