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摘        要 

 
零工式排程問題(Job shop scheduling problem, JSP)是個不斷被廣

泛研究的一項重要議題，並具有 NP-complete問題的特性。而遺傳演
算法(Genetic Algorithm, GA)是種常用於解決最佳化排程問題的演算
法，GA運用多點搜尋的方法使目標解得以多樣化，但須克服在搜尋
過程中過早收斂而落入區域最佳解(local minimum)的問題。因此本研
究以塔布遺傳演算法(TGA)為基礎搭配區域搜尋的機制，來找到 JSP
的最佳解，稱作改良式塔布遺傳演算法 (Modified Tabu genetic 
algorithm, MTGA)。此方法在產生子代的交配過程中加入禁區(Tabu 
list)的觀念去避免同系繁殖，更進一步以 Tabu search 的凌駕規則
(aspiration criterion)輔助子代的挑選，提升子代母體之強化性，再利
用自適性的突變方法(self-adaptive mutation)降低落入 local minimum
的機會。並以區域搜尋的機制加強區域搜尋能力找出最佳排程解。本

研究以標竿問題進行實驗，結果顯示 MTGA 和其他方法比起來具有
很優異的表現。 
 
關鍵字：遺傳演算法、零工式排程問題、塔布搜尋。 
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ABSTRACT 

 
 

The job-shop scheduling problem is the important issues to the 
research of optimal problems. Besides, tabu search is also applied to GA, 
called TGA for traveling salesman problem (TSP) that has better 
effectiveness than GA [6]. Thus, this is an interest and important research 
area for job-shop scheduling problem with TGA. In this paper, we try to 
discuss this issue. 

According to the TGA, it maintains diversity through broad-sense 
incest prevention. Therefore, the solutions can contain theirs diversity and 
prevent premature convergence. But in JSP problem, the crossover and 
mutation manners of TGA cannot produce the better solutions than GA. 
So we modified the crossover and mutation phases of TGA called 
modified TGA (MTGA). First, the modified crossover search phase uses 
a threshold (THc) to control the times of crossover for improving the 
qualities and convergence of solutions. Second, the mutation search phase 
use two parameters to control the selected points and the times of 
mutation in order to make the global search wildly and prevent to drop 
into local minimum more easily. And the experiments results demonstrate 
the superiority of MTGA in job-shop scheduling problems. Not only 
balance intensification, but also diversification. 
 
Keywords: Genetic algorithm, Job-shop scheduling problem, Tabu 

search. 
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Chapter 1 Introduction 
Current market trends, shorter product life cycles and competitive pressure 

to reduce costs have resulted in the need for zero inventory systems. In order 

to maintain market share, the system must be fast responding which implies 

that more stock has to be maintained. These conflicting requirements demand 

efficient, effective and accurate scheduling which is complex in all but the 

simplest production environment [2]. So, scheduling problems need to be 

solved by good scheduling algorithms and heuristics. Job-shop scheduling 

problem (abbreviated to JSP) is one of the hardest well-known combinatorial 

optimization problems. The problem is an allocation of the operations to time 

intervals on the machines, in order to find a minimum makespan. 

Genetic algorithms (GAs) are well-known heuristic algorithms and have 

been applied to solve a variety of complicated problem. In recent years, there 

is an interest of in using genetic algorithms for solving JSP [16, 18, 13]. GA 

has shown a good performance regarding its ability to search globally. It 

searches multiple points in the search space of population. It also uses a 

crossover operator that enables to search wider region. The diversity in GA is 

attributed to the form of population, which contains a certain number of 

encoded individuals for population. Therefore, heuristic algorithms pursue a 

good balance between exploration and exploitation in consideration of both 

convergence speed and optimized solution quality. However, in the 

conventional GA, parents are approved without any further examination after 

they are chosen at random or just by fitness. So, it’s hard to prevent the 

ancestry mating and control the solution quality.  
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In this research, we adapt tabu genetic algorithm, (TGA), for solving JSP 

problem. Furthermore, to modify tabu genetic algorithm, called MTGA that 

with local search mechanisms in crossover and mutation search phases to 

contain the diversification and intensification of solutions. Finally, using 

several experimental results to prove MTGA has better performance than GA 

and TGA.  

In this paper, we try to discuss this issue and its organized as follows. In 

section2, we review relevant literature related to our study. In section 3, we 

modified TGA, called MTGA for JSP and explained the process in detail. In 

section 4, evaluate and discuss the experimental results with our research. 

Finally, conclusions and future works are summarized in section 5. 

 

1.1. Job-shop scheduling problem (JSP) 

In general, the classical JSP can be stated as follows [12]: There are n 

different jobs and m different machines to be scheduled. Each job is 

composed of a set of operations and the operations order on machines is 

prespecified. The required machine and the fixed processing time characterize 

each operation. There are numerous constrains on jobs and machines: 

(1) A job does not visit the same machine twice. 

(2) There are no precedence constrains among the operations of different jobs. 

(3) Operations cannot be interrupted. 

(4) Each machine can process only one job at a time. 

(5) Neither release times nor due dates are specified. 

The problem is to determine the operation sequences on the machines for 
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minimizing the makespan, and the time is necessary to complete all jobs. An 

example of the three-job three-machine (3×3) JSP problem is presented in 

Table 1-1.  

Table 1-1. Example of 3×3 JSP problem 

 

 

 

 

 

 

A chromosome has gene information that shows the order of the 

job-number for solving the problem in GA. If the number of jobs is n and the 

number of machines is m, the chromosome consists of n × m genes. Each job 

must be depending on an order relation; it will appear m times exactly. Thus, 

each chromosome represents a feasible solution. In a 3×3 job-shop scheduling 

problem, 9 genes denote a chromosome, ‘1’ shows job1 (J1), ‘2’ shows job2 

(J2), ‘3’ shows job3 (J3), respectively. Each gene, operation (Op), is given 

priority from left to right. Therefore, a left gene has higher priority than right 

one. An example of a chromosome in a 3×3 job-shop scheduling problem is 

shown in Figure 1-1. 

 

 

 
 
 

 Operation (machine number /processing time) 

Job Op1 Op2 Op3 

J1 1 / 3 2 / 3 3 / 2 

J2 1 / 1 3 / 5 2 / 3 

J3 2 / 3 1 / 2 3 / 3 

2 1 3 3 2 1 3 2 1 

 

Figure 1-1. A Chromosome of 3×3 JSP problem 

Chromosome 



 4 

Chapter 2 Literature review 

2.1 Genetic Algorithm for Job-shop Scheduling Problem 

Genetic algorithm (GA) is one of the stochastic search algorithms based 

on biological evolution. In order to solve a clearly defined problem and an 

offspring represented the candidate of solutions. GA is according to crossover 

and mutation operators with their probabilities to produce a set of offspring 

chromosomes. A basic GA flowchart can be showed in Figure 2-1 [19]. As we 

know, GA likes an over and over process, an iteration is called a generation. A 

run means the whole set of generations. We try to find one or more highly fit 

chromosomes. 

Recently, there have more and more papers used hybrid GA to solve 

optimum problem. Because of GA provides quite simple structure, process 

and it has strong abilities of solving and searching. Furthermore, GA searches 

multiple points in search space of population by evolution of generations and 

characteristic of search randomly. The abilities can avoid GA dropping in the 

local optimum and toward the global optimum. Whitley [9] introduced 

designing GA has two important issues: selection pressure and population 

diversity. Selection pressure leads GA to exploit information from the fitter 

individuals and produces more superior offspring iteratively. The diversity in 

GA is concerned about the population, which contains a certain number of 

encoded individuals for exploration. Therefore, we must to find a good 

tradeoff between exploration and exploitation consideration of both 

convergence speed and optimized solution quality. 
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Start

Generate a population of chromosomes (N) : X1, …, XN

Calculate the fitness of each chromosome : f(X1), …, f(XN)

Start

Is the termination 
criterion satisfied?

Select a couple of chromosomes for mating 

No

With the crossover probability PC, exchange parts of the 
two selected chromosomes and create two offspring

Randomly change the values of genes in the two offspring 
chromosomes with the probability PM

Replace the offspring in the new population

Is the termination 
criterion satisfied?

In place of the current chromosome population with new 
population

Yes

Stop

No

Yes

 

Figure 2-1. Flowchart of simple genetic algorithm 
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Masato etc. [18] proposed the modified GA with search area adaptation 

(mGSA) for solving JSP that does not need such crossover operator in GSA. 

Goncalves etc. [13] presented a hybrid genetic algorithm for the job-shop 

scheduling problem. It used the chromosome representation of the problem is 

based on random keys. The scheduled used a priority rule in which are 

defined by GA.  

 

2.2 Tabu Genetic Algorithm (TGA) 

Fred Glover (1989) [11] proposed TS that is a strategy for solving 

combinatorial optimization problems. In this section, we display TS in a 

simple form of its conceptions. TS constrains the search by classifying certain 

of its moves as forbidden and to free the search by a short-term memory 

function. And utilize aspiration criteria to override the tabu restriction that 

allow superior solution. In TS, the tabu restrictions and aspiration criteria 

played a dual role in constraining and guiding the search process. Besides, it 

uses memory function to record the moving trajectories. According to the 

used memory structure, we classify these approached into two major 

categories: computation-based and memory-based mating strategies [6].  

Computation-based approach is the most common way to distinguish the 

degree of conformity among individuals. It is adapting hamming distance be 

the metric to calculate genotype or phenotype characteristics, and then mate 

the individuals by different strategies. It has been shown to maintain 

population diversity and improve the solution. However, memory–based 

schemes do not require extra computation to measure similarity. And it can 
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prevent premature convergence and reduce computational overhead in 

determining bloodline. They are reviewed in Table 2-1. 

Ting, Li and Lee proposed tabu genetic algorithm [6], which by 

incorporates the feature of TS into GA’s selection. TGA integrates the tabu list 

to prevent inbreeding so that population diversity can be maintained, and 

adapts the aspiration criterion to provide moderate selection pressure. Then it 

utilizes the self-adaptive mutation to overcome the hard of deciding mutation 

rate. It uses the classic traveling salesman problem (TSP) as a benchmark to 

verify the effectiveness of the proposed algorithm.  

The main emphases are bellows: 

ü The memory structure of TS: In order to control the diversity of 

subpopulation and avoid the condition of inbreeding, it use tabu list to 

record the search trajectory. 

ü Under the restrictions of tabu list: TGA can apply the aspiration criterion 

to support the subpopulation intensively and diversely. 

ü Utilizing self-adaptive mutation: According to the situation of population 

change the mutation dynamically to prevent the performance made by 

fixed mutation rate. 

The presented TGA is according to the structure of evolution of GA and 

the restrictive features of TS. At the first, selecting parents of TGA is the same 

with normal GA. At the same time the search strategy of TS to expand the 

obvious characteristics of both algorithms. The flowchart of TGA is showed 

in Figure 2-2 [6]. If the part of TS, highlighted in gray, is ignored, TGA 

becomes into a simple GA. It means that the reproductions of GA needed to 

be supervised by the elements of TS.  
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Table 2-1. Computation-based and Memory-based mating 

 Property Method 

Computation-
based mating 

Distinguish 
individuals’ 
similarities 
 
(Using hamming 
distance to measure 
similarity between to 
individuals.) 

Suggest the clearing policy. [1] 
 
Employ the concept of incest 
prevention. [14] 
 
Negative assortative mating. [3] 
 
Choosing different crossover 
method. [20] 
 
The phenotypic assortative mating. 
[25] 
 
Different assortative mating 
strategies. [5] 
 
Allowance of mating by a normal 
function of the normalized fitness. 
[15] 
 

Memory-based 
mating 

Record the results of 
mating 
 
(Memory structure is 
appended to 
individuals to enable 
their ancestry to be 
recognized.) 

The family tree to disallow incest by 
adhering to the ancestry-based incest 
law. [22] 
 
Ancestry table upon GA with 
variable population size. [3, 4] 
 
Devised three subpopulation 
schemes to control mating. [26] 
 
The race genetic algorithm. [7] 
 
The genetic algorithm with 
chromosome differentiation.[23, 24] 
 
On the harmonious mating strategy 
through tabu search. [6] 
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After being produced by genetic operators, each pair of offspring went 

through these restricts of TS, tabu list and aspiration criterion, to confirm that 

their parents are allowed to mate. When the mating is allowed to mate or is 

good enough to meet the aspiration criterion, it is grouped into acceptable and 

the offspring are reserved for the subpopulation. Otherwise, the offspring are 

rejected and the process returns to select a mate. The process is repeated until 

the mating is acceptable. If the number of experiments exceeds a predefined 

threshold, this condition is thought as a Deadlock. Then the selected mate will 

be mutated. They are regarded as acceptable mate, and delivered to 

subpopulation. 

All the researches have indicated that genetic algorithm and job-shop 

scheduling problem are the important issues to the research of optimal 

problems. Besides, tabu search is also applied to GA, called TGA for 

traveling salesman problem (TSP) that has better effectiveness than GA [6]. 

Thus, this is an interest and important research area for job-shop scheduling 

problem with TGA. 
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Tabu Search 

TGA1. Initialization

TGA2. Evaluation

TGA3. New generation

TGA4. Select parent. 1 

TGA5. Select parent. 2

Yes

Yes

No

TGA10. Mutation
TGA13. Evaluation

TGA complete

No

No

TGA12. Survive

Yes

No

TGA6. Crossover

TGA7. Tabu?

TGA8. Aspiration?

TGA9. Deadlock?

TGA11. Sub-population
filled?

Yes

Yes

TGA14. Termination?

 

 
Figure 2-2. Flowchart of TGA 
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2.2.1 Tabu List 

The contribution of tabu list in TGA is to prevent incest in a 

memory-based manner. Each successful mating in GA is regarded as a move 

in TS, thus it’s the same with tabu list in TS to prevent some moves be 

trapped in local optimum. TGA employs it to track reproduction and forbid 

incest. The selection is monitored and restricted by tabu list, just like the 

move in TS. So the clans of mating parents will record in tabu list of the other 

side. The following function 1 can defined the two chromosomes Ci（Gi ,λi, Ti）

and Cj（Gj ,λj, Tj）are tabu [6]. 

 

 

 

  

In TGA, after a successful mating, the parents update their tabu list with 

the mate’s clan, so that the mating history can be traceable. The offspring 

inherit the clan and updated tabu list entirely from one of the parents, rather 

than from a combination of both parents. 

The size of tabu list is proportional to the size of the population, and can 

be defined as function 2 [6]: 

 

 

NT is the size of the tabu list; δ is the parameter of proportionality   

(0≤δ< 1), and N is the size of the population. So a large population will 

accompanies a large tabu list. Thus, a bigger parameter of proportionality 

NT = δ × N                                            （2） 

                true,  if  λi ∈ Tj or λj ∈Ti, 

Tabu（Ci, Cj）=                                          （1） 

                false,  otherwise. 
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tightens the restriction and the searches focus on exploration. On the contrary, 

a smaller one loosens the restrictions and supports the search exploitation. 

However, if the parameter closes to zero, TGA degrades into GA. 

 

2.2.2 Aspiration criterion 

The aspiration criterion is another way to measure the mating. It is 

designed to permit the better solution overthrow the tabu restrictions. If the 

fitness of the offspring (Ci
’) is Fi

’ and the best solution as so far is S; then the 

aspiration criterion is defined as function 3 [6]. 

 

 

 

 

If the mating parents are trapped in tabu, their fitness of offspring is better 

than the best solution as so far. The offspring able to regardless of tabu 

restrictions. Therefore, aspiration criterion supports intensification under the 

consideration of diversification. So that, it can harmonizes he selection 

pressure and population diversity. 

 

2.2.3 Self-adaptive mutation 

In natural environment, the probability of mutation is not fixed. In order to 

adapt to the changing environment, organisms mutate by themselves. In GA, 

there is usually given a mutation rate of fixed probability. This manner cannot 

reflect the truly of nature condition. So TGA use self-adaptive mutation to 

imitate organism mutation in natural environment. 

                  true,  if  Fi
’ ＞ S, 

Aspiration（Ci
’）=                                          （3） 

                  false,  otherwise. 
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In the TGA, the population of diversity is too low to achieve an acceptable 

parents, the selection will be repeated indefinitely, causing a dead lock. 

Technically, the number of clans or the diversity shrinks with evolution. In 

order to prevent this condition, we use threshold (TH) to restrict the number 

of repeated trial mating. Deadlock is defined as function 4 [6]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

             true,  if  r  ≥  TH, 

Deadlock =                                              （4） 

             false,  otherwise. 
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Chapter 3 Modified TGA for Job-shop scheduling 

problem 

3.1 Tabu genetic algorithm for JSP 

3.1.1 Designing chromosomes 

A chromosome has genes information for solving problem in GA. 

However, in TGA, a clan number represents identification, it appended to 

each chromosome with tabu list in the course of recording the clans of 

offspring after evolution. The process will complete the TS strategy. So, a 

chromosome in TGA is showed in three parts, （G ,λ, T）, which G is a set of 

normal genes; λ is a clan number of chromosome, and T is a set of tabu list. 

The genes information used the operation-based representation [21]. It 

encodes a schedule as a sequence of operations and each gene stands for one 

operation. Gene is given priority from left to right. Therefore, a left gene has 

higher priority than right one. At the initialization stage, a clan number is 

assigned uniquely. The offspring will inherit the clan number from one of 

their parents. If there are the same clans in the population, it means they are 

from the same ancestry. The tabu list records several numbers of clan to 

prevent inbreeding. It shows in Figure 3-1 that such a chromosome structure 

presents an example of 3×3 job-shop schedule, an additional clan (6) and tabu 

list (4, 7).  
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3.1.2 Calculating fitness value 

In normal, the chromosomes are selected when the fitness values are 

bigger. That means the fitness value is bigger, the probability of being chosen 

is higher. However, the JSP problem is better with smaller makespan. So the 

makespan is transferred into the fitness value as follow [8]:  

f(x) represents fitness value; Cmax represents the max makespan; g(x) 

represents makespan. 

 

 

 

 

 

3.1.3 Tabu list 

The operator of updating the tabu list works like a queue. A new clan 

forbidden to mate will insert into the tabu list. If the tabu list is full, all the 

clans in it will shift to the right position. The last clan will be released from 

the tabu list, and regains the qualification to be mated. Figure 3-2 illustrates 

the operation of updating the tabu list in TGA. 

 

   

genes (operations for JSP) clan tabu list 

6 4 7 3 1 3 2 1 1 2 2 3 

 
 

Figure 3-1. Example of representation for JSP 

         Cmax – g(x),  when g(x) < Cmax 

f(x) ＝                                                  （5） 

0,  otherwise. 
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3.1.4 Crossover 

There are a pair of parents be selected randomly from population. When 

they crossover, the process can be divided into two parts at the same time, the 

process is showed in Figure 3-3. The one part is genetic operators on the 

genes as in the normal GA, and the other one is update clan and tabu list by 

the TS restrictions. 

First of all, introducing the genes part, a pair of parents think as PA and PB 

that two crossover points are selected randomly and look at the middle parts 

of genes present AP1 and BP1. Find the same genes in different locations from 

AP2 and BP2 and exchange them and their locations. They are became AC1 and 

BC1. After that, we assign the different genes from AP1 in AC1 respectively, so 

do the BP1 in BC1. The middle parts of offspring showed in AC2 and BC2. Then, 

the outside parts of two points are appended to AC2 and BC2 from PA and PB. 

The offspring are presented as CA and CB. This processing can make the 

offspring to keep the diversity but not go against the restrictions of JSP. 

Figure 3-2. Update the tabu list 

  6 4 7 3 1 3 2 1 1 2 2 3 8 

  6 4 7 3 1 3 2 1 1 2 2 3 

8 

9 

Insert tabu clan 

Move 

9 

Release 
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Figure 3-3. Example of crossover in TGA for JSP 
 

genes 
clan 

2 3 3 1 1 2 3 2 1 
PB 

2 2 1 1 2 3 1 
AP1 

3 3 1 1 2 3 2 
BP1 

3 2 2 1 1 2 3 1 3 7 5 1 3 

3 2 2 1 1 2 3 1 3 
PA 

2 2 1 1  3  
AP2 

3  1 1 2  2 

 

BP2 

3  1 1 2  2 
AC1 

2 2 1 1  3  
BC1 

3 2 1 1 2 1 2 
AC2 

3 2 1 1 3 3 3 
BC2 

CA 
3 3 2 1 1 2 1 2 3 

CB 
2 2 2 1 1 3 3 3 1 

Parent A 
3 2 2 1 1 2 3 1 3 5 4 2  
Parent B 
2 3 3 1 1 2 3 2 1 7 1 3 6 
 

after reproduction 
3 2 2 1 1 2 3 1 3 5 7 4 2 

5 4 2  7 1 3 6 

Tabu? 

Tabu? 

updated 
 tabu list 

5 7 4 2 7 5 1 3 

update tabu 

3 3 2 1 1 2 1 2 3 5 7 4 2 
Child A 

2 2 2 1 1 3 3 3 1 7 5 1 3 
Child B 

genes 

clan 
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3.1.5 Mutation 

The mutation process is that selection two genes from a chromosome 

randomly, then exchange the two genes. After mutation, the chromosome is 

viewed as a newborn and is assigned a new clan number. The example of 

mutation process in TGA for JSP is presented in Figure 3-4. This mutation 

operator is given for the population to make up for the lack of diversity. Thus 

the characteristics of dynamic adaptation in response to population conditions 

are expected to enhance performance. 

 

指派一個新的 clan 

    6 4 7 3 1 3 2 1 1 2 2 3 

    9   3 1 2 2 1 1 3 2 3 

Chromosome 

Mutation 

New chromosome 

 
Figure 3-4. Example of mutation in TGA for JSP 

 
 

3.2 Modified TGA 

In TGA for JSP, the results and effectiveness of experiments is not as good 

as the algorithm for TSP. It inherits the property of diversity, but it can’t take 

the balance between diversification and intensification. Thus, we modified 

crossover and mutation search phases of TGA, called modified TGA (MTGA) 

to improve ability of local search and extend search area. And try to 

convergent solutions under the diversity. The flowchart of MTGA is showed 

in Figure 3-5. 

Assign a new clan 
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Figure 3-5. Flowchart of MTGA 
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Based on the above definitions and discussion, the modified algorithm 

MTGA is formulated as follows. 
 

Algorithm MTGA. Assume that the population P consists of N 

chromosomes C1,…, CN, with fitness F1,…, FN , respectively. The best fitness 

S is recoded in each generation t. The genetic operators are performed to 

produce offspring C’1,…, C’N, and the deadlock criterion TH is defined to 

prevent infinite loop. The algorithm terminates at tmax generations, at which 

point the obtained best fitness S is the optimized result. 

MTGA1. [Initialization.] Set t ß 0, and initialize population Pt. 

MTGA2. [Evaluation.] Evaluate population Pt and result in F1,…, FN. Set S 

ß max (F1,…, FN). 

MTGA3. [New generation.] Set n ß 0 and r ß 0. (Where n is the number of 

produced offspring, and r is the repeated times of deadlock.) 

MTGA4. [Select Parent A.] Set i ß the best (1,…, N). (Select parents Ci.) 

MTGA5. [Select Parent B.] Set j ß random (1,…, N). (Select parents Cj.) 

MTGA6. [Tabu?] If Tabu (Ci, Cj) = false, go to step MTGA10. (Check 

parents Ci and Cj to see if they are forbidden to mate.) 

MTGA7. [Crossover.] (C’i, C’j) ß Crossover (Ci, Cj). 

MTGA8. [Aspiration?] If Aspiration (C’i, C’i) = true, go to step MTGA12. 

MTGA9. [Deadlock?] Set r ß r + 1. If r < TH, go to step MTGA5, otherwise, 

go to step MTGA11. 

MTGA10. [Crossover processing.] Set count_1 ß 0, and THc is the repeated 

times of crossover.  

(a) Select crossover points randomly.  
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(b) (C’i, C’j) ß Crossover (Ci, Cj).  

(c) If (Fi,…, Fj) < (F’i, F’j), go to step MTGA12.  

(d.) Set count_1 ß count_1 + 1. If count_1 < THc, go to step (a.). 

Otherwise, go to step MTGA12. 

MTGA11. [Mutation Processing.] Set count_2 ß 0, and THm, is the repeated 

times of mutation.  

(1) Select mutation points randomly.  

(2) (C’i, C’j) ß Mutation (Ci, Cj).  

(3) Set count_2 ß count_2 + 1. If count_2 < THm, go to step (1). 

Otherwise, go to step MTGA12. 

MYGA12. [Subpopulation filled?] Insert the offspring Ci and Cj into Pt+1, and 

set n ß n + 2. If n < N, set r ß 0 and return to step MTGA4. 

MTGA13. [Evaluation.] Set Pt+1 ß Survive (Pt, Pt+1) and t ß t + 1. 

Evaluation population Pt, and set S ß max (F1,…, FN). 

MTGA14. [Termination?] If t < tmax, return to step MTGA3. Otherwise, the 

algorithm MTGA is complete. 

 

3.2.1 Modified crossover search phase 

In TGA, the crossover phase has to obey the tabu restrictions, so it 

maintained the diversity of population. However, it will due to the insufficient 

convergence, for this reason, the modified crossover search phase uses a 

threshold (THc) to control the times of crossover. If the children are better 

than the parents, they survived in subpopulation. Otherwise, the parents repeat 

to crossover until the times of crossover equal to the threshold, and keep the 

last offspring to the subpopulation. It’s shown in Figure 3-1 of crossover 
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processing.  

About diversity issue, TGA had good performance in it. But in TGA 

crossover phase, it’s crossover one time, then delivery the offspring in 

subpopulation. It’s a consequence on the lack of convergence. Therefore, we 

utilize the times of crossover to do some local search for improving the 

solutions qualities and converging faster. 

 

3.2.2 Modified mutation search phase 

Mutation operator is in order to adapt evolution environment and adjust it 

dynamically. But the chromosomes mutate by two selected points that are still 

too hard to outleap the local minimum. Hence, we added a mechanism in 

mutation processing.  For example, assume a parameter set as 10, a pair from 

1 to 10 be selected the mutation points randomly. This manner is in the course 

of making the global search wildly. It’s also preventing to drop into local 

minimum more easily. After mutation, next step is another mechanism that 

controls the times of mutation by a threshold (THm). Finally, the best 

chromosomes are sent to the subpopulation. It’s shown in Figure 3-1 of 

mutation processing. 
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Chapter 4 Performance evaluation 
In our research, several comprehensive experiments are conducted to 

evaluate the performance of TGA and MTGA in JSP. We apply ft 10, 10×10, 

benchmark problem which has received the greatest analysis is the instance 

generated by Fisher and Thompson [10]. Lawler et al [17]. report that within 

6000 s when applying a deterministic local search to ft 10 more than 9000 

local optima have been generated with a best makespan value of 1006, 

furthermore emphasizing the difficultly and hardness of this problem. Besides, 

several researches proved that the optimal makespan is 930 of ft 10. 

 

4.1 Tabu list 

The impact of the size of tabu list on the performance of TGA is 

considered. The parameter of proportionality, δ, determining the size of tabu 

list, is experimentally changed from 0.1 to 0.5. A population size (N = 50), 

(generation= 500) and deadlock (TH= 10) are simulated. Each parameter runs 

20 times and then takes the best solutions for experiment result. The 

convergence of each parameter can be showed in Figure 4-1. 

By the number of parameter increased, the convergence is decreasing. 

When the parameters are 0.1 to 0.3, the convergences are still having the 

suspicion of premature convergence. But when the parameters are 0.4 and 0.5, 

the convergences are slower and slower. In these conditions can observe that 

the utility of tabu list can prevent premature convergence. 
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Figure 4-1. Comparison of tabu list parameter in TGA (10×10) 

 

Figure 4-2 plots the function of deadlock with the tabu list parameter = 0.4. 

The mutation probability is controlled by deadlock. When the deadlock is 

lower, the mutation probability is higher. In Figure 4-2, the deadlock higher 

than 20, TGA is trapped into premature convergence. However, the deadlock 

is slower and then mutation rate become higher. So the speed of convergence 

will slow down. 

Figure 4-2. Comparison of deadlock in TGA (10×10) 
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4.2 Performance comparison 

In this experiment, we apply GA, TGA, TGA* (Selected the best 

chromosome as one of the parents, the other one selected randomly.) and 

MTGA to ft 10 JSP problem as a case. In TGA, TGA* and MTGA, the 

population size (N) is set to 100, the tabu list parameter is set to 0.4 and the 

deadlock is set to 20. In GA, the population size is set to 100, crossover rate = 

0.5, and mutation rate = 0.15. 

The performance experimental results are decomposed into two parts: 

MTGA is compared with GA, TGA and TGA*. And compared the frequency 

distribution of GA, TGA, TGA* and MTGA. In Figure 4-3, we can see that 

the performance of GA outperforms TGA. Although, TGA prevents premature 

convergence, but the qualities of solutions are not good enough. It’s because 

that parents are selected by random. It leads the solution easier drop in local 

minimum. Thus, in TGA*, one of the parents choose the best chromosome in 

the population, the other one is selected by random. The qualities of solutions 

can be proved a lot. However, the performance of MTGA outperforms TGA*, 

the reason is that MTGA adapted location search in crossover and mutation 

search phases. It contains the good solutions in TGA* and also do local search 

in the good area that made the performance better. So the efficiency is 

obvious to the modified operator of crossover and mutation of MTGA and 

also found the optimal solution 930. 
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Figure 4-3. Comparison GA, TGA, TGA*and MTGA (10×10) 
 

Figure 4-4 shows the frequency distribution of results, respectively. It is 

shown here that the distribution of MTGA has width narrower and the 

solutions are better than GA, TGA and TGA*. Therefore, it is confirmed that 

MTGA shows better performance than GA and TGA. 
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Figure 4-4. Frequency distribution of makespan (10×10) 

 

 

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1
35

1
70

1
11

01
14

51
18

01
21

51
25

01
28

51

Generation

M
ak

es
pa

n GA

TGA*

TGA

MTGA



 27 

Chapter 5 Conclusion 
This research apply TGA to 10×10 JSP problem, it maintains diversity 

through broad-sense incest prevention by tabu list. Therefore, the solutions 

can contain theirs diversity. It also can prevent premature convergence by 

deadlock. But in JSP problem, the crossover and mutation manners of TGA 

cannot produce the better solutions than GA. So we modified the crossover 

and mutation phases of TGA called modified TGA (MTGA). First, the 

modified crossover search phase uses a threshold (THc) to control the times of 

crossover for improving the qualities and convergence of solutions. Second, 

the mutation search phase use two parameters to control the selected points 

and the times of mutation in order to make the global search wildly and 

prevent to drop into local minimum more easily. And the experiments results 

demonstrate the superiority of MTGA in job-shop scheduling problems. Not 

only balance intensification, but also diversification. Furthermore, it finds out 

the optimal makespan 930. 
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