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Practical mplementation of the C,, Index when Using Subsamples

1

Abstract

Capability indices are key measures in the context of never-ending improvement in
quality. Confidence bounds are derived for the common measures of process capability. The
process measures are estimated based on a single random sample of observations from the
normally distributed process, which is in statistical control. In practice, and in much of the
quality control literature, process data are collected over time in subsamples representing
rational subgroups. In this paper, therefore, we use the Patnaik’s (1950) approximation to
construct the estimation and capability testing of C,, based on multiple samples. An example
is also given to demonstrate this simple approximate procedure for judging whether a stable

process meets the present capability requirement.

Keywords: Capability Indices, Confidence Bound, Critical Value, p-value

1. Introduction

Capability analysis is an important step in implementing a control system. And, for a
current summary of advancements and requirements in the field of capability analysis, the
interested reader is directed to the review paper with discussion, Kotz and Johnson (2002)
issue of the Journal of Quality Technology. In practice, many quality characteristics can be
expressed in terms of a numerical measurement when dealing with a quality characteristic that
is a variable. Usually it needs to monitor both the mean value of the quality characteristic and
its variability. Control of the process mean quality level is usually with the control chart for
the X chart. Process variability can be monitored with either a control chart for the S chart
or the R chart.

Suppose that a quality characteristic is normally distributed with mean p and standard
deviation o. If X; X, ... X, is a sample of size n, then the mean of this sample is X .
In most cases, both p and ¢ are unknown. Therefore, they need to be estimated from prelim
-inary samples or subgroups of sample from process, which is in control. These estimates
usually are based on at least 20 to 25 samples. Suppose that m subsamples are available and
each sample contains » observations on the quality characteristic. Typically, » will be small,
often 4, 5, or 6.
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Let X ,)? s eens X be the average of each subsamples then a reasonable estimator of
1> 2 m g p

W, the process mean. is given by

X=X, +X,++X)/m. (1.1)

To construct the estimation and capability testing of C,, based on multiple samples, we
need an estimate of the standard deviation 6. We may estimate o either by the sample standard
deviation or the range of the m subsample means. For the present, we concentrate on the range
method. If X; X, ... X, is a sample of size n, then the range of the sample is the difference
between the largest and smallest observations; that is

R = Xonax — Xonin (1.2)
where Xo= max{ X; Xo, ... X, } and X,;,= min{ X; X5 ... X, }. There is a well-know
relationship between the range of a sample from a normal distribution and the standard
deviation of that distribution. The random variable ¥ = R /o is called the relative range. The
parameters of the distribution of Y are a function of the sample size n. If the expected value of
the Y is d,, then E(R /d;) = o. Consequently, an estimator of o is & = R /d,. Therefore, if R
is the average range of the m preliminary samples, we may use &= R /d; to estimate .

Ott (1975) points out, if the sample size is relatively small, the range estimate yields a
good an estimator of the variance o~ based on a single sample. For moderate value of n, say,
n>10, the range method loses its efficiency rapidly, as it ignores all the information in the
sample between X, and X,;,. However, for the small sample size, n = 4, 5, or 6, often
employed on variables control charts, it is entirely satisfactory.

For thorough discussions of different capability indices, e.g., the firstly proposed process
capability indices are C, and C,; which were developed by Kane(1986). Boyles(1991) pointed
out the C, and C,; are yield-based indices, which are independent of the target 7, which fail to
account for process centering. Chan et al. (1988) developed the index C,,, in order to take into

account the process centering being defined as follows
USL-LSL

Com= .
6\/0'2 +(u-T)>

(1.3)

Greenwich and Jahr-Schaftrath (1995) introduced a new index C,, which is easier to use

and analytically convenient. The index C,, is defined as follows

2 2
C, - L _ -7 o

2 2 N2
Cpm D D

(1.4)
where D = min{USL — T, T — LSL }= d/3, [LSL,USL] is the specification interval, p is the

process mean, ¢ is the process standard deviation(overall process variability), d =(USL— LSL)/
2 is half the length of the specification interval, and 7T is the target value. Let (u — T)*/D” be
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denoted by Cj, ( inaccuracy index ) and o*/D* be denoted by Cj» ( imprecision index ). Thus,
Cyp = Ciy + Cjp and it is a simple transformation of the index C,,,, under stationary controlled
conditions.

Owing to the relation C,,, which assumes a smaller value for a process more capable
meeting its specifications and a larger value for a less capable process. Any non-zero value of
C,p indicates some degree of incapability of the process. And these sub-indices also are
providing the proportions of the process incapability contributed by the departure of the
process mean from the target and the process variation, respectively.

When using subsamples, Li et al.(1990) have studied the distribution of the estimators of
C, and C base on ranges. Kirmani et al.(1991) have studied the distribution of the estimators
of C, base on sample standard deviations of the subsamples.

In this article, therefore, we will focus on the estimators of the process parameter ¢ by
the ratios of sample range divided by d,. We, besides, apply the derived distribution to study
the use of hypothesis testing to assess process capability. Also, we give the tables of the
confidence bounds and p-value on the capability indices based on range, justifying whether

the process potential and performance to meeting consumer’s expectation specification.

2. Approximate confidence bound for C,, based on range

In this section, we derive confidence intervals for C,,, based on range. Denote by X,
Xz, ... X, arandom sample of n observations, drawn from a normal population having mean
4 and standard deviation o. Then the range in this sample is denoted by R = X0 — Xonin.

Suppose the total sample are grouped to m subsamples such that each subsample contain

n observations, the mean of the m ranges will then be denoted by R ms n and R , 1s the
range of a sample of size n.

Let E(R)=0d>and Var( R ) =c" d; . Then the mean and variance of the distribution of

R ., »/ © are given by, respectively,

E(R pyn/0)=E(R10/c)=d, 2.1)

and Var(R ., ,/o)=Var(R . ,/c)/m= di/m. (2.2)

Then R ms n/ dr 18 an unbiased estimate of 6, where d, and d; are constants see Hartley and
Pearson (1951). According to Patnaik(1950) it has been shown that R ,,, ,/ ¢ is distributed

approximately as cy/ Jv. Thus,
(R n/0) xvict = g2, (2.3)

where y has the chi-square distribution with v degrees of freedom and ¢ and v are
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constants which are function of the first two moments of the range. Using these relations, we

can easily obtain the values of ¢ and v for any n and m. We refer the results based on the

Patnaik’s approximation to “approximate results®, where v =1/(-2+ 2\/ 1+2(d,/d,)* Im)

and ¢ =dox~Jv/2xT(v/2)/T((v+1)/2) = da(1+1/(4Vv)).

Assume that the process measurement follows N( u, o°), the normal distribution, the

index and reasonable estimators of C,, as following

~  (X-T) &°
Cpp_ Dz +D2:

6= (X, ~T) [(n-1). (2.4)
i=1

From (1.4) and (2.4), we have
6*lo’=(n-D(1+A/n)(n-1+A)xC, /C,. (2.5)

Since 6 =R'/d, is an unbiased estimate of o, where R'indicates eitherR ,,, , or R 1. n-
(That is, either the mean range of m samples or the range for a single sample of size n.) We
obtain that

(n=D(1+A/n)[(n-1+A)xC, /C, xd;vIc*=(R'/c) xv/c’ = y}. (2.6)
where A=n(u—-T)*/c’is unknown non-central chi-square distribution parameter. Its

reasonable estimate A is defined by A = n()? —~T)*/6* based on range.

Now,let w,=w, (X,,-~-,X ) be a statistics satisfying

l-a= P(C,<w,)
:PLXR’z>d22VX(n—1)(1+/1/n)XCpp ’ 2.7)
¢’ o’ n—1+41 w,,

where 1-a does not depend on C,,. We have

d2vie* x(n=0)1+2/n)l(n—1+A)xC, Iw, =1 V). (2.8)

Thus the 100(1—ea) % approximate upper confidence bounds on C,, /C pp based on n and

A

Ais

2 2
(n—l)(l+/1/n)xdzv>< 1

2

Wpp /C pp = ~ 5
n—1+ﬂ, c Zl—a(v)
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:2(F((v+1)/2)]zx(n—l)(l+/1:/n)x L (2.9)
L(v/2) n—-1+4 2. (v)

where ;(127 . (V) s the upper 100 (1-a) % of the Chi-square distribution with v degrees of

freedom. At the juncture, the v degrees of freedom for the chi-square distribution may be
integer or not integer then we may approximate chi-square by interpolating value of

chi-square value.
Tables 1 ~ 2 tabulate the 100 (1 — &) % approximate upper confidence limits for C,, / C s

whennand A are given. For A=0and A=1, the approximate upper confidence bounds on
Cop/ C o> 1t 18 seen that C,, /C »p decreases as n and/or m are increases, for any o. Furthermore,
for those A> 1, for fixed m, most of the upper confidence bounds on Cop /C »p have a
concave downward slightly variation as # increase, for o = 0.05, 0.025, and 0.01.

A process is called capable if the C,, less some prefixed value, say co= w,,, value of ¢y
may be 1, 0.75, 0.6, 0.5, etc. In our formulation, if

2 A
¢ C—"x( Lw/2) j A L), (2.10)

T2 {D(w+D)/2)) (n=D)x(+A/n)
then we claim that the process is capable at least 100 (1 — ) % of the time.

In special case, we consider u =T, then A =0, and

divie’xC,  /C, =v/c’xR” /o>~ y}.

\4

(2.11)

Thus, the 100 (1 - &) % approximate upper confidence bounds of the ratio of C,, / C pp 18 given

I'(v/2) Zioa (V)

3. Test hypothesis

A practice that is becoming increasingly common in industry is to require a supplier to
demonstrate process capability as parts of the contractual agreement. Thus, it is frequently
necessary to demonstrate that the process capability index meets or less some particular target
value, say cy. The process meets the capability requirement if C,, ¢y, and fails to meet the
capability requirement if C,, > co, then we have chosen the usually used benchmark values, ¢,
say, 1, 0.75, 0.6 or 0.5, of C,, in quality condition. This is a simple decision-making
procedure.
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In statistics, it is to test H,: C,, > co
H: Cy, ¢ 3.1
Also, we are using the estimate of C,,, C op» as the statistic and will evaluate p-value to
make a decision. The p-value is the probability of wrongly concluding that an incapable

process is capable. First, when C,, = ¢, then the critical value ¢,, /co is determined by

a=P(C, <c,lC, =¢c)

2
_p Zv2<d22vx(n 1)(1+%/n)xcpp ‘Cp,, =c, | (3.2)
c n—-1+ A1 Co

where « is given significant level. Hence, we have
d;v 5 (n-1)(1+ A/n) y S

- - 72 (v)> (3.3)
C2 n—1+l CO Zl—a()

where g7 (v) is the upper (1—a) percentile of the chi-square distribution, with v degrees

of freedom, then we obtain the maximum critical value c,, /cy is as following:

C((v+1)/2)) (n=1)x(1+A/n) 2

Table 3 ~ 4 gives the 100(1 -« )% approximate maximum critical value for c,, /cy, when

A, 0, m,n are given. We find that, for 4=0 and A= 1, the approximate maximum critical
value for c,,/cy, it is seen that c,,/c increases as n and/or m are increases, for any a. Moreover,

for those A> 1 and given m, most of the maximum critical value for ¢,, /cohave a slightly
concave upward variation as n increase, for a = 0.05, 0.025, and 0.01.

2 A~
And, p-value= P(Cpp < épp) =p sz < dzz" % (n=Dd+ /E/”) % € |C = ¢,
c n—1+4 co

=P(zf<2><(F((V+l)/2)jzx("_1)(“%/")”” c =C°} (3.5)
I'(v/2) n—1+ A4 e

Where C,,= C »» denotes the observed value of the test statistic, and W, = C ,/cy . Table
5 ~ 8 given the 100(1 - & )% approximate p-value for C,, , when A,m ,nare given.

For W = 0.9, we find that, p-value of C,, concave downward as n and/or m are increase
for /iqéO. But, for W = 1, for p-value of C,, increases as A#0 and n increase, but it is
decrease, as A= 0 and 7 increase. Moreover, for those W <1, p-value of C,p decreases as n
and/or m are increase for various A .

In special case, we consider p = 7, then A = 0, and

dzzv/cz><C;m/(§;m=v/cz><(R'/a)2 ~yl. (3.6)
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2 2
Thus, the maximum critical value ¢, /c is (%j X M )

C((v+1)/2) 2

and the p - value= P(épp <

>

PP)

=P[Zv2 <2X(Mj xW |C :co]. (37)
F(v/2) pp pp

4. The procedure

As stated before, to check it the process meets the capability requirement, we first
determine process capability value, c¢,, of C,,, and the a-risk. Second, we calculate the
estimated value C pp from the sample. Third, from the appropriate Table we find the

maximum value C op /co based on (x,/i , m and n. Finally, if the lower confidence bounds is
greater than ¢oand the p-value o, then we conclude that the process is capable. Otherwise,

we do not have sufficient information to conclude that the process meets the present

capability requirement. In sum, we summarize these steps shown in Table 9.

Table 9: The step of the U.C.B. for C,,, / C »p and p-value for C,,.
Step Cop
1. Determine the value of ¢, (setto 1, 0.75, 0.6 or 0.5) and a.

2.a. Compute 6=R ,, ,/d>.
b. Calculate the value A = n()? ~-T) /6.

c. Calculate C,,and W,,= C,,/co=C,,/cy .

3. a. Find the corresponding U.C.B. based on a, A, mand n.
b. Find the corresponding p-value and maximum critical C op /covalue based

on W,,, A,mandn.

4. a. If the C pp times the tabulated U.C.B. ¢, conclude that the process is

capable; Otherwise, we do not have enough information to conclude that the
process is capable.
b. If the p-value a, conclude that the process is capable; Otherwise, we do not

have enough information to conclude that the process is capable.

c. If C op 18 less than ¢, times the tabulated maxi. critical value based on

(x,ﬁ., m and n, conclude that the process is capable; Otherwise, we do not
claim the process is capable.
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5. Numerical example

We use the data given in Table 5-1 of Montgomery (2001) to demonstrate this
approximate procedure. This example is about a manufacturing process, which produces
piston rings for an automotive engine. The measurements are the inside diameter of the rings
manufactured in this process with 25 subsamples, each subsample of 5 sample. The USL =
74.05 and LSL = 73.95, and T =74 = M, m = 25, n = 5. From the process data, we obtain

sample mean )? = 74.001176 and the mean of the m ranges is denoted by R ,,, ,= 0.02276,

d»=2.32593 and 6 =R ,,, »/d>»=0.009785, and A= 0.072216, then C'pp = 0.349665.
As stated before, to check whether the process was “satisfactory”, i.e., C,, <0.75, o= 0.05.
Step 1. Define C,,

0.75, ¢, =0.75.

Step 2. Calculate X =74.001176, R »5.5=0.02276, &= 0.009785, and

A=0.072216, C ,,=0.349665, and W,, = 0.349665/0.75 = 0.46622.

Step 3. From the Tabulate, we obtains

a. Upper confidence limits of C,, is 0.349665 x 1.288578 =0.450571

b. Maximum critical value of épp 15 0.75x0.776049 =0.582037

C.

p-value( Cpp) = 0.000003.

Step 4. For C,,, we can conclude that the process is “satisfactory” because C,, =

0.349665 < 0.582037. Moreover, upper confidence limits of C,, is less than

¢, =0.75 and p-value( Cp, ) = 0.000000 < = 0.05.

Table 1: The U.C.L. for Cpp/épp, 95%, m = 20, based on Range.

n A=0 1 5 10 15 20 25 30

2 1.87299  1.40474  1.09258  1.02163  0.99503  0.98109  0.97251  0.96670
3 1.52051 1.35156  1.15848  1.09814  1.07330  1.05975 1.05122  1.04535
4 1.39897  1.31154  1.18038  1.12994  1.10752  1.09485 1.08670  1.08102
5 133542 1.28200 1.18704  1.14464 1.12456  1.11285  1.10517  1.09975
6 129560  1.25961 1.18763  1.15164  1.13365  1.12285  1.11565  1.11051
7 126803  1.24215  1.18569  1.15481 1.13864  1.12869  1.12194  1.11707
8 124760 1.22810 1.18262  1.15586  1.14127  1.13208  1.12576  1.12115
9 123176 121655 1.17912  1.15573  1.14250  1.13400  1.12808  1.12371
10 1.21908 1.20689  1.17554  1.15492  1.14289  1.13501 1.12944  1.12531
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Table 2: The U.C.L. for Cpp/épp, 95%, m = 25, based on Range.

n__ A=0 1 5 10 15 20 25 30
2 1.73938  1.30454 1.01464  0.94875  0.92405 091110  0.90314  0.89774
3 144973  1.28865  1.10456  1.04703  1.02334  1.01042  1.00228  0.99669
4 134730 1.26310 1.13679  1.08821 1.06662  1.05441 1.04657  1.04110
5 1.29316 1.24144  1.14948  1.10843  1.08898  1.07764  1.07020  1.06496
6 1.25903  1.22406  1.15411 1.11914  1.10165  1.09116  1.08416  1.07917
7 123530  1.21009  1.15508  1.12500  1.10925  1.09955  1.09298  1.08824
8 1.21765  1.19863  1.15424  1.12812  1.11388  1.10491 1.09874  1.09424
9 120395 1.18909  1.15250 1.12963  1.11671 1.10840  1.10261 1.09834
10 1.19296  1.18103  1.15035  1.13017  1.11840  1.11068  1.10524  1.10119
Table 3: The max. critical values for ¢, /co, 95%, m = 20, based on Range.
n A=0 1 5 10 15 20 25 30
2 0.53391 0.71187 091527  0.97883  1.00500  1.01928  1.02826  1.03444
3 0.65768  0.73988  0.86320  0.91063  0.93171  0.94362  0.95128  0.95662
4 071481 0.76246  0.84718  0.88500  0.90292 091337  0.92022  0.92505
5 0.74883  0.78003  0.84243  0.87364  0.88924  0.89860  0.90484  0.90929
6 0.77184  0.79390  0.84201  0.86832  0.88211  0.89059  0.89634  0.90048
7 0.78863  0.80506  0.84339  0.86594  0.87824  0.88599  0.89131  0.89520
8 0.80154 0.81426  0.84558  0.86515  0.87622  0.88333  0.88829  0.89194
9 081185 0.82199  0.84809  0.86526  0.87527  0.88183  0.88646  0.88991
10 0.82029  0.82857  0.85067  0.86586  0.87497  0.88105  0.88539  0.88865
Table 4: The max. critical values for c,, /co, 95%, m =25, based on Range.
n__ A=0 1 5 10 15 20 25 30
2 057492  0.76656 098557  1.05402  1.08220  1.09757  1.10725  1.11390
3 0.68978  0.77601  0.90534  0.95508  0.97719  0.98969  0.99772  1.00332
4 074222 0.79170  0.87967  0.91894  0.93755  0.94840  0.95551  0.96052
5 0.77330  0.80552  0.86996  0.90218 091829  0.92796  0.93440  0.93900
6 0.79426  0.81696  0.86647  0.89355  0.90773  0.91646  0.92237  0.92664
7 0.80952  0.82639  0.86574  0.88889  0.90151  0.90946  0.91493  0.91892
8 0.82125 0.83429  0.86637  0.88643  0.89777  0.90505 091013  0.91387
9 0.83060 0.84098  0.86768  0.88524  0.89549  0.90220  0.90694  0.91047
10 0.83825  0.84672  0.86930  0.88482  0.89414  0.90035  0.90478  0.90811
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Table 5 : The p-value for C,,, m = 20,A= 0, based on Range.

n\Ww_0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 0.00000 0.00000 0.00011 0.00177 0.01058 0.03631 0.08804 0.16872 0.27342 0.39170 0.51160
3 0.00000 0.00000 0.00000 0.00001 0.00040 0.00445 0.02403 0.07957 0.18604 0.33752 0.50795
4 0.00000 0.00000 0.00000 0.00000 0.00002 0.00062 0.00728 0.04070 0.13399 0.29988 0.50641
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00010 0.00245 0.02231 0.10057 0.27161 0.50557
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00088 0.01276 0.07742 0.24883 0.50501
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00034 0.00759 0.06087 0.23001 0.50461
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00014 0.00465 0.04863 0.21404 0.50430
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00294 0.03950 0.20044 0.50406
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00190 0.03246 0.18854 0.50387

Table 6 : The p-value for C,,, m = 25,,A= 0, based on Range.

n\W_0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 0.00000 0.00000 0.00002 0.00052 0.00478 0.02172 0.06385 0.13966 0.24764 0.37648 0.51033
3 0.00000 0.00000 0.00000 0.00000 0.00009 0.00168 0.01332 0.05703 0.15783 0.31785 0.50708
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00015 0.00313 0.02554 0.10722 0.27759 0.50573
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00081 0.01223 0.07590 0.24722 0.50497
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00023 0.00618 0.05540 0.22314 0.50447
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007 0.00327 0.04146 0.20351 0.50411
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00180 0.03165 0.18706 0.50384
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00102 0.02460 0.17314 0.50363
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00060 0.01941 0.16111 0.50346

Table 7 : The p-value for C,,, m = 20,A=1, based on Range.

n\W_0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 0.00000 0.00000 0.00001 0.00025 0.00177 0.00721 0.02067 0.04655 0.08804 0.14598 0.21864
3 0.00000 0.00000 0.00000 0.00000 0.00010 0.00130 0.00834 0.03252 0.08878 0.18604 0.31917
4 0.00000 0.00000 0.00000 0.00000 0.00001 0.00023 0.00320 0.02067 0.07811 0.19852 0.37546
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 0.00126 0.01303 0.06620 0.19956 0.40921
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00051 0.00820 0.05518 0.19522 0.43074
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00021 0.00522 0.04590 0.18872 0.44537
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00009 0.00337 0.03823 0.18136 0.45578
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 0.00222 0.03207 0.17402 0.46350
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00148 0.02704 0.16680 0.46938
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Table 8 : The p-value for C,,, m = 25,,A=1, based on Range.

n\W_0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 0.00000 0.00000 0.00000 0.00005 0.00052 0.00297 0.01089 0.02943 0.06385 0.11744 0.19015
3 0.00000 0.00000 0.00000 0.00000 0.00002 0.00037 0.00364 0.01926 0.06508 0.15783 0.29786
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 0.00114 0.01121 0.05614 0.17104 0.36004
5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00036 0.00634 0.04585 0.17196 0.39744
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00012 0.00359 0.03679 0.16758 0.42149
7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 0.00207 0.02945 0.16107 0.43790
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00121 0.02364 0.15377 0.44961
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00073 0.01910 0.14644 0.45829
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00044 0.01554 0.13933 0.46490
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