
1

行政院國家科學委員會補助專題研究計畫成果報告

製造業管理資訊系統的複雜度評估-一種馬可夫分析模式
A Stack-based Markov Model for the Complexity Measurement of

Production Management Information Systems

計畫類別： ■個別型計畫　　□整合型計畫

計畫編號：NSC89－2213－E－343－001－

執行期間：　88 年　8 月　1 日 至　89 年　7 月　31 日

計畫主持人： 駱至中

共同主持人： 王鄭慈

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：南華大學資訊管理學系暨研究所

中　華　民　國　　89 年　　9 月　　25 日

2

行政院國家科學委員會專題研究計畫成果報告

製造業管理資訊系統的複雜度評估-一種馬可夫分析模式
A Stack-based Markov Model for the Complexity Measurement of

Production Management Information Systems
計畫編號：NSC 89-2213-E-343-001

執行期限：88 年 8月 1日至 89 年 7月 31 日
主持人：駱至中、王鄭慈 南華大學資訊管理學系暨研究所

E-Mail: locc@ mail.fgu.edu.tw、 ctwang@mail.fgu.edu.tw

一、中英文摘要

製造管理資訊系統開發及維護成本的
多寡與系統複雜度有顯著的正向關係，資
訊系統的開發者與使用者因此需要如軟體
複雜度評估（software metric）這種可以用
來預估管理資訊系統開發及維護所需的時
間、人力與經費及其可靠性的工具。運用
古典資訊理論的觀念，在堆疊式的馬可夫
分析模式中，資訊系統的資訊內容
（information content）或系統開發者的熵
（entropy）已被證實可用來代表該系統的
複雜程度。依據此一觀點及我們先前相關
研究的結果為基礎，在本研究計畫中，我
們建立了一個更合理而且完善的管理資訊
系統之複雜度評估模式。 這個系統複雜度
評估模式兼顧到因程式控制流程以及程式
大小所產生的系統複雜度。此一模式可用
為管理資訊系統或一般應用軟體開發前用
來預估系統開發所需各項成本之有效工
具。除了理論與實際的管理資訊系統複雜
度評估及分析模式建立外，我們並以不同
之管理資訊系統程式組作為測試樣本，驗
證了這個新的複雜度評估模式。

關鍵詞：製造管理資訊系統、資訊系統評
估、系統分析與設計、軟體複雜度評估、
資訊理論、馬可夫模式

Abstract

There is no doubt that information
systems with high efficiency in handing
complex information can help manufacturing
companies gain more advantage in global
competition they are facing today. Software

metric is an important and active topic in
system engineering and management, in
which numbers that are extracted from the
software itself are used to indicate the
conceptual complexity and to predict the
maintenance time, cost, and reliability of the
software. Since management information
systems are also software, software metric is
certainly a handy technique to measure the
complexity of information systems for
selected evaluation tasks. The Stack-Based
Markov (SBM) model is a new-sprung
approach for measuring complexity of
information products. In the SBM model,
the generation of a new symbol is
accompanied by transformation of the top of
the stack, and the probabilities for the next
symbol depend on the top of the stack. So,
the information contents of programs or
entropies of development sources can be used
as indicators of system complexities. In this
research, based on the SBM model, we have
developed a reasonable analyzing model and
a new software metric to measure complexity
of management information systems. This
new approach takes the complexity of control
structure of program and the complexity of
program blocks into consideration. We also
propose a new and proficient complexity
measurement for blocks of programs, in
which the complexities for control flow of
expressions, are considered. Several sets of
programs of real information system are also
used to validate the proposed model.

Keywords: management information
systems, information system evaluation,
system analysis and design, software metric,
information theory, Markov analysis model

3

二、計畫緣由與目的

In many managerial fields, numerical
descriptions extracted from products or
business and manufacturing processes are
helpful for selecting better products or
improving business and its processes. In
software engineering, software metrics
extractable from software or development
processes can be recognized as their
conceptual complexities. These conceptual
complexities can also be used to predict the
cost or reliability of products and processes.
In general, software metrics can be classified
into two categories: software product metrics
and software process metrics [9]. Software
product metrics are measures of software
products, such as source codes and design
documents. Software process metrics are
measures of the software development
process, in which they focus on the effort of
development such as time and methodology
used. The research described in this paper
proposes a new software product metric based
on the information theory and the Stack-based
Markov model. This new software metric can
be used to reflect not only the size complexity
but also the structure complexity of cited
software. Experimental tests are performed to
validate this proposed software metric and the
result shows that the proposed metric is a
reasonable software complexity measure and is
certainly a vigorous tool to measure the
complexity of manufacturing information
systems for certain evaluation tasks.

三、研究方法、結果與討論

　　
There are many related software product

measures proposed by previous researchers.
Such measures may be simply count the lines
of computer programs for complexity
measurement, but the definition of line is not
well defined [1]. Another well known
textual measure for complexity measurement
is the “software science” proposed by
Halstead, based on both length in operators
and operands and vocabulary in unique

operators and operands [5]. All textual
measures do not consider the structure
complexities of the software that they are
evaluating. The most famous structure
measure is the cyclomatic number proposed
by McCabe [8], in which the complexity of a
program is determined by the structure of
control flow graphs of that program (denoted
by G). The cyclomatic number of the
control flow graph G, v(G), is computed as
v(G)=e-n+2, where the notation e is used to
designate the number of edges, and the
notation n is used to designate the number of
nodes in the graph G. The cyclomatic
number is easy to calculate and is widely
accepted, but it still has two major
weaknesses: (1) ignorance of the nesting
complexity and (2) exclusion of the inside
complexities of blocks of codes. Based on
McCabe’s cyclomatic number, many
measures are proposed later by Evangelist
and by Harrison and Magel to represent the
complexities for nesting levels of control
flow [4, 6], but they still not include the
complexities of program blocks.

The first work that applies information
theory to deal with symbols that carry
information is done by Shannon [10]. In the
Markov model with traditional linear
bounded memories, each symbol depends on
its preceding symbols. However, in real
programs, the generation of symbol may not
depend on its preceding one in all cases.
For example, considering the structure flow
of a program, in a case where there are two
nesting “if” structures in the program, the
second “end-if” symbol is in fact paired with
the first “if” symbol instead of the second
“if” symbol. Hence, it is clear that an
information source with traditional memory
is not adequate to reflect or to parse the
syntax of programming languages. Edwards
proposed an information source with a
pushdown stack rather than bounded memory
[2, 3]. They defined a stack-based Markov
(SBM) source, where the generation of a new
symbol is accompanied by transformation of
the top of s stack, and the probabilities for
the next symbols generated depend on the top

4

of the stack. The information content of a
symbol is then determined by its conditional
probability relative to the top of the stack.
The information content of a program P is
calculated as the summation of logarithms of
the inverse of generated symbols’ conditional
probabilities, and is described as Eq. (1).
The entropy of a source, S, is the average
information content of each symbol, and is
calculated as shown in Eq. (2).

)(
)|(

1
log)(bits

cx
PI

ij
∑= (1)

)(
)|(

1
log)|()()(bits

cxp
cxpcpSH

iji j
iji∑ ∑= (2)

In previous two equations, xj is used to
represent the j-th symbol of the program and
ci is used to denote the stack top of the SBM.
Many SBM models have been proposed and
validated to include expressions, data
dependencies, and object oriented design [3,
7, 11, 12, 14, 15].

3.1 The Proposed Model

In Wang’s previous research [12, 13],
SBM models are proposed for measuring the
expressions and programs complexities.
Although they are very complicate and quite
difficult to understand, there is an important
concept are proposed, the structure
complexity of expression. As we know, a
program consists of two part, control
structure and expression parts. And, the
main part of a program is the expression part
of the computer program. All the software
metrics for measuring expressions
complexities focus on the size complexity
only. The SBM model for expressions
includes both structure and size complexities
for expressions. The structure complexity for
an expression is determined by the
precedences and associativities of operators
in the expression. For example, the two
expressions, “a+b*c” and “c*b+a,” have the
same number of operators and operands, as
well as the size complexity. But they have

different order of operators and operands,
that is, they have different evaluating order.
And the former one is more complicate than
the latter one, when evaluating and
understanding them.

In order to understand the concept of
structure complexity for an expression easily,
the above expressions in example can be
rewritten as “(())” and “()(),” by considering
the evaluating order. Hence, all expressions
are transformed to strings of balanced
parentheses, and the SBM model for
expressions could be transformed to the SBM
model for balanced parentheses. In this SBM
model, all operators and operands in
expressions are transformed parentheses
representatively by their precedences and
associativities. Then using SBM model for
balanced parentheses, we can easily get
different complexities for these expressions
and the complexity for the former one is
higher than the complexity for the latter one.

In this research, we propose a new SBM
model for programs that includes structure
and block complexities. The block
complexity consists of size as well as
structure complexities for expressions. And
this new SBM model is much simpler than
Wang’s previous SBM models. First of all,
we assume the control structure symbols and
the expression symbols have the same weight
in programs. Then, we convert all the
expressions in a computer program into
streams of parentheses, and combine them
with the SBM model for balanced
parentheses. Therefore programs are
simplified to streams of parentheses, and the
basic unit of programs is the parenthesis. In
this proposed SBM model, the problem of
block complexity does not exist. This new
SBM model is shown in Table 1.

Using the proposed SBM model for
balanced parentheses to analyze practical
computer programs, we found a new
problem that this SBM model could not
be used to distinguish the nesting
complexity between strings of
parentheses. Taking expressions

5

“a=a*b+c+d” and “a=c+a*b+d” as
example, they are equivalent to the
strings of parentheses “(()()())” and
“((())())”. According to the calculation
of the new SBM model, both of them get
the same conditional probabilities p and q,
and have the same entropy and
information content. It is clear to see
that they should have different entropies,
and the second expression is more
complicate than the first one. In this
case, the new SBM model is not yet
perfect. In order to solve this problem,
the SBM model is modified as described
in Table 2. As shown in Table 2, we
add a counter to count the number of
open parentheses pushed in the stack, and
the counter is initialized to 0. When
pushing stack action occurred, the
counter is increased by 1; and when
popping stack action occurred, the
counter is decreased by 1. After these
adjustments, the nesting problem is
solved.

Table 1. The Proposed SBM Model for
Balanced Parentheses

Next Symbol/Stack Action
() $Stack Top
/push (/pop (/none

Empty
p 0 1-p

(q 1-q 0

Table 2. Modified SBM Model for
Balanced Parentheses

Next Symbol/Stack Action
() $

Stack Top /push (
++counter

/pop (
--counter

/none

Empty p 0 1-p

(1

(2

…

(n

q1

q2

…

0

1-q1

1-q2

…

1

0

0

…

0

Using this modified SBM model, we
found that the entropy for the first expression

is 0.58279(bits), and is 0.83442(bits) for the
second expression. This result indicates
that the second expression is more
complicate than the first one. Based on this
implementation, it is obvious that differences
or complexities among expressions of
programs can be easily distinguished by
using our proposed model.

3.2 Exper imental Results

In order to validate our SBM model, we
construct three C programs as testing
examples. Program 1 and 2 have the same
size but different structures. Program 2 and
3 have the same structure but different sizes.
These C programs are measured by this
modified SBM model, and the results are
shown in Table 3. The entropy for program 2
is higher than the entropy for program 1, due
to the difference between structure nesting
complexities. The entropy for program 3 is
higher than the entropy for program 2, caused
by the block complexity. The result shows
that this SBM model can reflect the structure
and block complexities correctly.

Table 3. Entropies for 3 Testing Examples
Name Entropy

Program1 0.86278

Program2 0.88618

Program3 0.89173

Another validation test is also performed
on a genuine manufacturing information
system for the management unit of an
industry park in Taiwan. This system has 6
programs written in Visual Basic. The lines
of code, number of symbols and the
measuring result of the proposed SBM model
analyzer for each program are summarized in
Table 4. The result indicates that program
Bprogram5 has the least size complexity but
the highest program complexity. It means
that program Bprogram5 has the highest
structure complexity. This result also
concludes that the program complexity
depends not only on the structure complexity

6

but also the block complexity. This
confirms that the proposed SBM model can
include these complexities for programs
exactly.

Table 4. Experimental Results of MISs

Name Number of
symbols

Total lines
of code Entropy

Bprogram1 18298 730 0.92322

Bprogram2 42605 1536 0.93062

Bprogram3 25880 987 0.94255

Bprogram4 32183 1082 0.93131

Bprogram5 11821 410 0.96767

Bprogram6 16742 517 0.85216

四、計畫成果自評

有關本計畫執行成果的評量，可依下列
角度分別列述﹕
¨ 就研究內容與原計畫相符程度而言，它

們在內容和精神上是完全相同的。
¨ 就達成預期目標情況來看，達成率也可

稱是 100%達成。
¨ 我們相信本計畫所提的方法更能充份

反應管理資訊系統之複雜度，成為未來
更具體地評估資訊系統與應用軟體的
一個重要依據，同時作為降低系統開發
及維護成本的參考指標。此一研究成果
在學術上或應用上均有其價值，這些具
體貢獻對於管理者在開發、擴充或選用
任何管理資訊系統前的決策分析工作
將大有幫助。

¨ 至於本研究是否適合在學術期刊發
表﹕本研究之部份研究成果將在年底
發表於 IJIE2000 國際學術研討會暨工
工年會。 完整的研究結果也正進行實
證資料補強和結構修改的工作，準備向
國內外工業工程或糸統工程等相關學
術期刊投稿。

五、參考文獻

[1] Conte, S. D., Dunsmore, H. E. and Shen, V. Y.
(1986), A Software Engineering Metrics and

Models, Benjamin/ Cummings.
[2] Edwards, William R. (1990), “Information

Source Models for Software Analysis,” in the 13th

Minnowbrook Workshop on Software
Engineering, pp.8-17.

[3] Edwards, William R., Yang, Mingguey and Kim,
Jong-Soo (1991), “Application of the Stack-
Based Markov Source to Software Analysis,” in
the 14th Minnowbrook Workshop on Software
Engineering, pp.44-62.

[4] Evangelist, Michael (1984), “An Analysis of
Control Flow Complexity,” in Proceedings of
IEEE COMPSAC-84, pp. 388-396.

[5] Halstead, M. H. (1979), “Advances in Software
Science,” in Advances in Computers, Academic
Press, vol. 18 pp.122-129.

[6] Harrison, Warren A. and Magel, Henneth I.
(1981), “A Complexity Measure Based on
Nesting Level,” ACM SIGPLAN Notices, vol. 16,
no.3, March, pp. 69-74.

[7] Holland, James A. (1993), “A Stack based Object
Oriented Development Model,” Ph.D.
Dissertation, The University of Southwestern
Louisiana.

[8] McCabe, Thomas J. (1976), “A Complexity
Measure,” in IEEE Transactions on Software
Engineering, vol. SE-2, no.4, December, pp.308-
320.

[9] Mills, Everald E. (1988), “Software Metrics,” in
SEI Curriculum Module SEI-CM-12-1.1.

[10] Shannon, C. E. (1948), “A Mathematical Theory
of Communication,” in Bell Systems Technical
Journal, vol. 27, pp.379-423.

[11] Wang, Cheng-Tzu and Edwards, William R.
(1991), “An Implementation of the Stack-Based
Markov Model on Pascal Code,” Technical
Report 91-4-1, Center for Advanced Computer
Studies, University of Southwestern Louisiana.

[12] Wang, Cheng-Tzu (1994), “Stack-Based Markov
Model Analysis of Expressions and Data
Dependencies on Programs,” Ph.D. Dissertation,
The University of Southwestern Louisiana.

[13] Wang, Cheng-Tzu (1997), “A Probabilistic
Model of Software Complexity Measurement,” in
Proceedings of the 8th International Conference
on Information Management, pp. 776-782.

[14] Yang, Mingguey and Edwards, William R.
(1991), “Experimental Study of the Stack-Based
Markov Model,” Technical Report 90-4-7, Center
for Advanced Computer Studies, University of
Southwestern Louisiana.

[15] Yang, Mingguey and Edwards, William R.
(1992), “Stack-Based Markov Model for
Imperative and Functional Languages,”
Technical Report 92-5-7, Center for Advanced
Computer Studies, University of Southwestern
Louisiana.

7

	page1
	page2
	page3
	page4
	page5
	page6
	page7

