A Stack-based Markov Modé for the Complexity Measurement of
Production Management Information Systems

[] O
NSC89 2213 E 343 001
88 8 1 89 7 31

N N I B I O

89 9 25

A Stack-based Markov Model for the Complexity M easur ement of
Production M anagement I nformation Systems

NSC 89-2213-E-343-001

88 8

E-Mail: locc@ mail.fgu.edu.tw

software metric

information content
entropy

Abstract

There is no doubt that information
systems with high efficiency in handing
complex information can help manufacturing
companies gain more advantage in global
competition they are facing today. Software

89 7 31

ctwang@mail.fgu.edu.tw

metric is an important and active topic in
system engineering and management, in
which numbers that are extracted from the
software itself are used to indicate the
conceptual complexity and to predict the
maintenance time, cost, and reliability of the
software. Since management information
systems are also software, software metric is
certainly a handy technique to measure the
complexity of information systems for
selected evaluation tasks. The Stack-Based
Markov (SBM) model is a new-sprung
approach for measuring complexity of
information products. In the SBM model,
the generation of a new symbol is
accompanied by transformation of the top of
the stack, and the probabilities for the next
symbol depend on the top of the stack. So,
the information contents of programs or
entropies of development sources can be used
as indicators of system complexities. Inthis
research, based on the SBM model, we have
developed a reasonable analyzing model and
a new software metric to measure complexity
of management information systems. This
new approach takes the complexity of control
structure of program and the complexity of
program blocks into consideration. We also
propose a new and proficient complexity
measurement for blocks of programs, in
which the complexities for control flow of
expressions, are considered. Severa sets of
programs of real information system are also
used to validate the proposed model.

Keywords. management information
systems, information system evaluation,
system analysis and design, software metric,
information theory, Markov analysis model

In many manageria fields, numerical
descriptions extracted from products or
business and manufacturing processes are
helpful for selecting better products or
improving business and its processes. In
software engineering, software metrics
extractable from software or development
processes can be recognized as their
conceptual complexities. These conceptua
complexities can also be used to predict the
cost or reliability of products and processes.
In general, software metrics can be classified
into two categories. software product metrics
and software process metrics [9]. Software
product metrics are measures of software
products, such as source codes and design
documents. Software process metrics are
measures of the software development
process, in which they focus on the effort of
development such as time and methodology
used. The research described in this paper
proposes a new software product metric based
on the information theory and the Stack-based
Markov model. This new software metric can
be used to reflect not only the size complexity
but also the structure complexity of cited
software. Experimental tests are performed to
validate this proposed software metric and the
result shows that the proposed metric is a
reasonable software complexity measure and is
certainly a vigorous tool to measure the
complexity of manufacturing information
systems for certain evaluation tasks.

There are many related software product
measures proposed by previous researchers.
Such measures may be simply count the lines
of computer programs for complexity
measurement, but the definition of line is not
well defined [1]. Another well known
textual measure for complexity measurement
is the “software science” proposed by
Halstead, based on both length in operators
and operands and vocabulary in unique

operators and operands [5]. All textual
measures do not consider the structure
complexities of the software that they are
evauating. The most famous structure
measure is the cyclomatic number proposed
by McCabe [8], in which the complexity of a
program is determined by the structure of
control flow graphs of that program (denoted
by G). The cyclomatic number of the
control flow graph G, \G), is computed as
V(G)=e-n+2, where the notation eis used to
designate the number of edges, and the
notation nis used to designate the number of
nodes in the graph G. The cyclomatic
number is easy to calculate and is widely
accepted, but it still has two major
weaknesses. (1) ignorance of the nesting
complexity and (2) exclusion of the inside
complexities of blocks of codes. Based on
McCabe's cyclomatic number, many
measures are proposed later by Evangdist
and by Harrison and Magel to represent the
complexities for nesting levels of control
flow [4, 6], but they till not include the
complexities of program blocks.

The first work that applies information
theory to dea with symbols that carry
information is done by Shannon [10]. Inthe
Markov model with traditiona linear
bounded memories, each symbol depends on
its preceding symbols. However, in red
programs, the generation of symbol may not
depend on its preceding one in all cases.
For example, considering the structure flow
of a program, in a case where there are two
nesting “if” structures in the program, the
second “end-if” symbol isin fact paired with
the first “if” symbol instead of the second
“if” symbol. Hence, it is clear that an
information source with traditional memory
is not adequate to reflect or to parse the
syntax of programming languages. Edwards
proposed an information source with a
pushdown stack rather than bounded memory
[2, 3]. They defined a stack-based Markov
(SBM) source, where the generation of a new
symbol is accompanied by transformation of
the top of s stack, and the probabilities for
the next symbols generated depend on the top

of the stack. The information content of a
symbol is then determined by its conditional
probability relative to the top of the stack.
The information content of a program P is
calculated as the summation of logarithms of
the inverse of generated symbols conditional
probabilities, and is described as Eq. (1).
The entropy of a source, S is the average
information content of each symbol, and is
calculated as shown in Eq. (2).

I(P=Q log (bits) (1)

1
(x;1¢c)

(2)

H(S):é_ p(c,)é p(x; | c;)log o 1 (bits)

j%i

In previous two equations, X is used to
represent the j-th symbol of the program and
¢ is used to denote the stack top of the SBM.
Many SBM models have been proposed and
validated to include expressions, data
dependencies, and object oriented design [3,
7,11, 12, 14, 15].

3.1 The Proposed M odel

In Wang's previous research [12, 13],
SBM models are proposed for measuring the
expressions and programs complexities.
Although they are very complicate and quite
difficult to understand, there is an important

concept are proposed, the structure
complexity of expression. As we know, a
program consists of two part, control
structure and expression parts. And, the

main part of a program is the expression part
of the computer program. All the software
metrics for measuring expressions
complexities focus on the size complexity
only. The SBM model for expressions
includes both structure and size complexities
for expressions. The structure complexity for
an expression is determined by the
precedences and associativities of operators
in the expression. For example, the two
expressions, “atb*c” and “c*b+a,” have the
same number of operators and operands, as
well as the size complexity. But they have

different order of operators and operands,
that is, they have different evaluating order.
And the former one is more complicate than
the latter one, when evauating and
understanding them.

In order to understand the concept of
structure complexity for an expression easily,
the above expressions in example can be
rewritten as “(())” and “()(),” by considering
the evaluating order. Hence, all expressions
are transformed to strings of balanced
parentheses, and the SBM model for
expressions could be transformed to the SBM
model for balanced parentheses. In this SBM
model, al operators and operands in
expressions are transformed parentheses
representatively by their precedences and
associativities. Then using SBM model for
balanced parentheses, we can easily get
different complexities for these expressions
and the complexity for the former one is
higher than the complexity for the latter one.

In this research, we propose a new SBM
model for programs that includes structure
and block complexities. The block
complexity consists of size as well as
structure complexities for expressions. And
this new SBM model is much ssimpler than
Wang's previous SBM models. First of all,
we assume the control structure symbols and
the expression symbols have the same weight
in programs. Then, we convert al the
expressions in a computer program into
streams of parentheses, and combine them
with the SBM model for balanced
parentheses. Therefore programs are
simplified to streams of parentheses, and the
basic unit of programsis the parenthesis. In
this proposed SBM model, the problem of
block complexity does not exist. This new
SBM model isshown in Table 1.

Using the proposed SBM model for
balanced parentheses to analyze practical
computer programs, we found a new
problem that this SBM model could not

be used to distinguish the nesting
complexity between strings of
parentheses. Taking expressions

“a=a*b+c+d” and “a=cta*b+d” as
example, they are equivalent to the
strings of parentheses “(()()())” and
“((0)O)”. According to the calculation
of the new SBM model, both of them get
the same conditional probabilities p and g,
and have the same entropy and
information content. It is clear to see
that they should have different entropies,
and the second expression is more
complicate than the first one. In this
case, the new SBM model is not yet
perfect. In order to solve this problem,
the SBM model is modified as described
in Table 2. As shown in Table 2, we
add a counter to count the number of
open parentheses pushed in the stack, and
the counter is initialized to 0. When
pushing stack action occurred, the
counter is increased by 1; and when
popping stack action occurred, the
counter is decreased by 1. After these
adjustments, the nesting problem is
solved.

Table 1. The Proposed SBM Model for
Balanced Parentheses

Next Symbol/Stack Action
Stack Top |() $
/push (/pop (/none
Empty 0 1-p
(q 1-q 0

Table2. Modified SBM Model
Balanced Parentheses

for

Next Symbol/Stack Action
() $
Stack Top|/push (/pop (/none
++counter --counter
Empty p 0 1-p
(1 o[1-q; 0
(2 o} 1-0z 0
(n 0 1 0

Using this modified SBM model, we
found that the entropy for the first expression

is 0.58279(hits), and is 0.83442(bits) for the
second expression. This result indicates

that the second expression is more
complicate than the first one. Based on this

implementation, it is obvious that differences
or complexities among expressions of
programs can be easily distinguished by
using our proposed model.

3.2 Experimental Results

In order to validate our SBM model, we
construct three C programs as testing
examples. Program 1 and 2 have the same
size but different structures. Program 2 and
3 have the same structure but different sizes.
These C programs are measured by this
modified SBM model, and the results are
shown in Table 3. The entropy for program 2
is higher than the entropy for program 1, due
to the difference between structure nesting
complexities. The entropy for program 3 is
higher than the entropy for program 2, caused
by the block complexity. The result shows
that this SBM model can reflect the structure
and block complexities correctly.

Table 3. Entropiesfor 3 Testing Examples

Name Entropy
Programl 0.86278
Program2 0.88618
Program3 0.89173

Another validation test is also performed
on a genuine manufacturing information
system for the management unit of an
industry park in Taiwan. This system has 6
programs written in Visual Basic. Thelines
of code, number of symbols and the
measuring result of the proposed SBM model
analyzer for each program are summarized in
Table 4. The result indicates that program
Bprogram5 has the least size complexity but
the highest program complexity. It means
that program Bprogram5 has the highest
structure complexity. This result also
concludes that the program complexity
depends not only on the structure compl exity

but aso the block complexity. This
confirms that the proposed SBM model can
include these complexities for programs

exactly.

Table 4. Experimental Results of MISs

Name Number of | Total lines Entropy
symbols of code
Bprograml 18298 730 0.92322
Bprogram?2 42605 1536 0.93062
Bprogram3 25880 987 0.94255
Bprogram4 32183 1082 0.93131
Bprogram5 11821 410 0.96767
Bprogram6 16742 517 0.85216
100%
[JIE2000

[1] Conte, S. D., Dunsmore, H. E. and Shen, V. Y.

(1986), A Software Engineering Metrics and

[2]

[31

[41

[5]

[6]

[71

[8]

[°1

[10]

[11]

[12]

[13]

[14]

[15]

Modéls, Benjamin/ Cummings.

Edwards, William R. (1990), “/nformation
Source Models for Software Analysis” in the 13"
Minnowbrook Workshop on Software
Engineering, pp.8-17.

Edwards, William R., Yang, Mingguey and Kim,
Jong-Soo (1991), “Application of the Sack-
Based Markov Source to Software Analysis” in
the 14" Minnowbrook Workshop on Software
Engineering, pp.44-62.

Evangelist, Michael (1984), “An Analysis of
Control Flow Complexity,” in Proceedings of
|EEE COMPSAC-84, pp. 388-396.

Halstead, M. H. (1979), “ Advances in Software
Sience” in Advances in Computers, Academic
Press, vol. 18 pp.122-129.

Harrison, Warren A. and Magel, Henneth I.
(1981), “A Complexity Measure Based on
Nesting Level,” ACM SIGPLAN Noatices, val. 16,
no.3, March, pp. 69-74.

Holland, James A. (1993), “ A Qack based Object
Oriented Development ~ Model,” Ph.D.
Dissertation, The University of Southwestern
Louisiana

McCabe, Thomas J. (1976), “A Complexity
Measure” in |EEE Transactions on Software
Engineering, vol. SE-2, no.4, December, pp.308-
320.

Mills, Everald E. (1988), “ Software Metrics” in
SEI Curriculum Module SEI-CM-12-1.1.
Shannon, C. E. (1948), “ A Mathematical Theory
of Communication,” in Bell Systems Technical
Journal, vol. 27, pp.379-423.

Wang, Cheng-Tzu and Edwards, William R.
(1991), “An Implementation of the Qack-Based
Markov Model on Pascal Code” Technical
Report 91-4-1, Center for Advanced Computer
Studies, University of Southwestern Louisiana.
Wang, Cheng-Tzu (1994), “ Sack-Based Markov
Model Analysis of Expressions and Data
Dependencies on Programs” Ph.D. Dissertation,
The University of Southwestern Louisiana.

Wang, Cheng-Tzu (1997), “A Probabilistic
Model of Software Complexity Measurement,” in
Proceedings of the 8" International Conference
on Information Management, pp. 776-782.

Yang, Mingguey and Edwards, William R.
(1991), “ Experimental Sudy of the Sack-Based
Markov Model,” Technical Report 90-4-7, Center
for Advanced Computer Studies, University of
Southwestern Louisiana.

Yang, Mingguey and Edwards, William R.
(1992), “Sack-Based Markov Model for
Imperative and Functional Languages”
Technical Report 92-5-7, Center for Advanced
Computer Studies, University of Southwestern
Louisiana

	page1
	page2
	page3
	page4
	page5
	page6
	page7

