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Abstract

This paper proposes a new texture anaysis
method namely texture feature coding method
(TFCM).

transforms a gray-level image into feature image

The texture feature coding method

whose each pixel is represented by a texture feature
number (TFN). The TFN histogram and TFN
co-occurrence matrix are derived to generate many
texture features for texture classification. The
gray-level co-occurrence matrix (GLCM) and texture
spectrum (TS) have been used for comparison in
discriminating some of Brodatz's natural texture

images and ultrasonic liver images in experiments.
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Experimental results reveal that the results using the
texture feature coding methods is superior to other
two.

Keywords: Texture analysis, Texture feature coding
method, Gray-level co-occurrence matrix, Texture

spectrum

1. Introduction

Texture analysis is an important technique in many

applications of analysis for classification or

segmentation of image. In the texture segmentation,
the pixels are grouped together to form regions of

uniform texture based on the distribution of local



features, whereas in the texture classification, the
problem is to classify an instance of a textured region
in an image as one of a set of classes. The general
methods for feature extraction are estimate the local
textures at each pixel in a texture images and thus
derive a set of statistics from the distributions of the
local features. There are several methods for defining
the textural features. Each method has its own way to
define the features that are used in the classification
problem. In the practice, structural and statistical
approaches are the two major methods for extracting
texture features. In the structural methods, texture is
regarded as the repetition of some basic primitive
patterns with a certain rule of placement. The
Fourier spectrum analysis [1] is a well-known method
for determining the primitive and the displacement
rule. In the statistical method, texture is considered
as the distribution of texture features that are extracted
on alocal areaon the textural image. The gray-level
co-occurrence matrix (GLCM) [2] and texture
spectrum (TS) [3] are two widely used texture
analysis methods in the category.

In this paper, we propose a new texture analysis
method called texture feature coding method. It is
used to analyze the Brodatz's texture images and
ultrasonic liver images for classification.

This paper is organized as follows. In section 2 we
describe the two methods. In section 3 of this paper
we propose a new texture analysis method namely
texture feature coding method (TFCM) that contains
the advantages of both the GLCM and TS of texture
analysis. Section 4 discusses the performance of
TFCM with the GLCM and TS method by testing
some of Brodatz's natural texture images. Finaly, the

conclusion of this paper is given.

2. Previous Works
GLCM and TS methods of texture analysis are

briefly described here. Techniques of both methods
are utilized in the development of the TFCM method.
2. 1 Gray-Level Co-occurrence Matrix|[1]

A co-occurrence matrix is generally referred to
as agray-level co-occurrence matrix whose entries are
transitions between all pairs of two gray levels (not
necessarily distinct) [1]. The gray-level transitions are
calculated based on two parameters, displacement d
and angular orientation g. More precisely, let / and j
be two gray levels and () denote the number
of transitions between two pixels whose gray levels
are j and j with dtpixels apart and angular orientation
. In other words, N, m) is the number of
pixel-pairs at locations (x, ) and (w, 2 satisfying the
following conditions;
G(xy) =i,G(w,2) = j|(xy)- (w2, =(d.q)

where |(x, y)- (w 2|, =dq) is a distance measure
m

to describe the distance between two pixels of spatial
locations at (x, y) and (w, 2 with d-pixels apart and
along angular orientation g. Normalizing Ngq (i, J)
yields the probability or the relative frequency of
gray-leve transitions.

Na,q (i, )
N

i, /d.q) = (2)

Where N is the number of total gray-level transitions

in the co-occurrence matrix.

Based on the gray-level co-occurrence matrix,
Haralick [1] proposed 13 feature measures for texture
analysis under a specific d-pixels apart and angular
orientation g. There are angular second moment,
correlation, variance, inverse difference moment,
entropy, sum entropy, difference entropy, information
measure of correlation, sum average, contrast, sum
variance, difference variance.  Because of the
descriptive and easily computable nature, the
co-occurrence features have been widely used in most

of the texture analysis problems.



2. 2 Texture Soectrum| 3]

The texture spectrum was first proposed by He
and Wang in [3]. The idea is to consider a so-called
texture unit described by Fig. 1 with ), the central

pixel, designated as the pixel currently examined and
its 8 neighboring pixels V;,i>0 . Three values
{0,1,2} will be assigned to V/ respectively according
to Vi<V, V,=V,, V>V, asgivenbelow.

In equation (2), the D is denoted to tolerance of

Obvioudly, 3P =6561
combinations for the £ in equation (2). The

variation. there are

distribution of occurrence of al texture numbers N

generated by equation (2) is called texture spectrum.
As the texture unit represents the local texture
information of a given pixel and its neighborhood, the
statistics of all the texture units in an image reved its
global texture aspects.  Severa features are useful

for classification and defined in [3], being,

Vi W VW
VW ¥
VW V ¥

Figure 1. 3x3 texture unit of texture spectrun

i0if Vi-\p<D
E=i1if =y

12if vi- y>D
Vo = the gray level of the central pixel.

where

@)

8 .
Ng =4 V3!

Jj=1
black-white symmetry (BWS), geometric symmetry
(GS), degree of direction (DD), orientation features

(MHS, MVS, MDS1 and MDS2) and central
symmetry (CS).

3. Texture Feature Coding M ethod

In this section, we propose a novel approach to
generating texture feature numbers, called Texture
Feature Coding Method (TFCM). The design
rationale of this method is based on gray-level
variationsof a 3 3 texture unit.

3. 1 Texture Feature Number Generation

TFCM is a coding scheme, which transforms an
original image into a texture feature image whose
pixels are represented by texture feature numbers. The
texture feature number of each pixel X is generated on
the basis of gray-level changes of its 8 surrounding
pixels, called atexture unit, aterm was used in He and

Wang'swork [3] described in Fig. 1.

2| 1] 2
1] X| 1
21 1| 2

Fig. 2. 3x3 texture unit of TFCM

Unlike He and Wang's texture spectrum, we
consider the connectivity of the texture unit. The 8
neighboring pixels in Fig. 2 constitute the
8-connectivity of the texture unit, which can be
divided into the first-order 4-connectivity pixels and
second-order 4-connectivity pixels. The four pixels
labeled 1 satisfy the first-order 4-connectivity of the
texture unit because they are immediately adjacent to
the pixel X. They will be denoted by first-order
connectivity pixels. The other four pixels labeled 2
satisfy the second-order 4-connectivity of the texture
unit, which are diagonally adjacent to X and will be
denoted by second-order connectivity pixels. In
order to code pixel X in Fig. 2, TFCM produces a pair
of integers (a, b ) where g and p represent
gray-level variations of first-order connectivity and
second-order connectivity respectively. As shown in
Fig. 3, two scan lines along the 00-180° and 909-270°



directions produce two sets of three successive
first-order connectivity with pixel X in the middle of
the horizontal and vertical lines forming by "+".
Similarly, two scan lines along the diagonal directions
450-2250 and 1350-3150 forming by "~ " dso
produce two sets of three successive second-order

connectivity pixelsas shownin Fig. 4.

2/ 1] 2 1] 2
Xl 1 1/x] 1

1)1 2 1

. o° 18003can line
" 90%270° scanline
Fig. 3. First-order 4-connectivity

Assume that the scan direction is from top to

X 450—225D scan line

" 1359-315° scanline

Fig. 4. Second-order 4-connectivity

down and left to right, the three successive pixels can
be arranged as (a, b, ¢) in the scanning order. For
(@a,b,c

the vertical line of the first-order connectivity in Fig. 3,

example, if represents pixels scanned by

the top pixel is denoted by a, pixel X by b and the
bottom pixel by ¢  Suppose that (GgGpGp
corresponds the gray levels of three pixels (a, b, ¢)

respectively. If we consider two successive

gray-level changes between two pairs (G Gp) and
(Gp.Gp), there are four different types of variations.
The four types of gray-level variation defined by
equation (3) can be graphed by the gray-level
Type (i)
describes the case that the gray levels of a, band care

graphical structure shown in Fig. 5.

very close within the tolerance D. Type (ii) is the
case that one pair of gray levelsis within D, but the
gray-level variation of the other pair variation exceeds
D. Type (iii) is the case where the gray levels of a, b,
¢ are continuously decreasing or increasing with
gray-level differenceslarger than D. In Type (iv), the
gray-level variation is first decreasing then increasing
or first increasing then decreasing which the

increments and decrements exceed D.

O —

@iy >

vy ~

Fg 5 Typssd gay-levd ggphicd sructure varigtios

@) if(|Ga- Gb|E DIC (|G, - G[E D)
(i) if [(|Ga - Gpl€ DIC(|Gp - G D]
El(|Ga- Ghf DIC(G, - Gc|e D) (3)
(i) if[(Ga- Gp>D)C(Gp- G > D)
El(Gy- Ga>D)C(G.- G, > D)
(V) ifl(Ga- Gy >D)G(G- Gp > D)
E((Gy- Ga >D)C(Gy- G > D)

According to this definition of gray-level
graphical structure variation. The higher the type
number is, the greater gray-level variation will occur.
Since both 4 and p, corresponding to first and
second order connectivity respectively, have two scan
lines, each of which can produce a type of gray-level
variation, 3 and p can be assigned by a pair of
gray-level graphical structure variations. The total

number of combinations of arbitrary two gray-level

graphical  structure variations (including self
combinations)  is @:10 . The 10
combinations are listed in Fig.6.
Scan linel
(i) (i)  Gi) (v
Scan (i) 1 2 3 5
line2  (ii) 2 7 11 13
@iy |3 11 17 19
(iv) 5 13 19 23

Fig. 6. The variation generation of first-order (5 ) or
second-order ( p ) 4-connectivity

For example, if a or b =11, there is a combination of
(ii) and (iii). More precisely the columns represent the

horizontal scan line 09-180° for & or the diagonal

line 450-2250 for p, and the rows represent the



vertical scan line 909-270° for & or the asymmetric

diagonal line 1350-315° for p . Finaly, the texture

feature number of each pixel is generated by taking
the product of g and p . Let the gray level of the
pixel with spatial location (x, J) be denoted by G(x, )
and the corresponding texture feature number by
TFMx, ). Then
TEN(x, Y)=a(x )" b(x ¥ 4
where g (x, )) and p (X, )) are values obtained using
Fig. 6 for the pixel at spatial location (X, J).
3.2 Texture Feature Number Histogram and Texture
Feature Number Co-occurrence Matrix

According to equation (4), there are 55 used
texture feature number among {1,2...529}. Therefore
we can compress 529 values to 54 values by removing
unused texture feature numbers. By re-labeling we
map that these 55 values to the values 0 to 54, i.e.,
{0,1,2,L_,54} . In this case, we can define a texture
feature number histogram by

=" 5 012154

where D isthe gray-level variation tolerance given
in equation (3), Np(n) Iis the frequency of
occurrence of the texture feature number n and Nis
the total number of pixels in the feature image. In
Section 2.1, the co-occurrence matrix was defined on
gray levels of an image. However, in the TFCM
approach we define a co-occurrence matrix on texture
feature numbers of the feature image obtained by
TFCM, called texture feature number co-occurrence
matrix. In analogy with equation (1), a probability
digtribution of transitions between any pair of
arbitrary two texture feature numbers can be defined

similarly by

g, j1{o12L54 (6)

, _ No,aq(i))
poli, j|d.q) = N

t

where p is the gray-level variation tolerance given
in equation (3), Np g4 (i, J) is defined similarly as
in equation (1) with the gray-level variation tolerance
D, / and j are texture feature numbers rather than gray
levels as defined in equation (1) and p, is the
normalization factor which is the total number of TFN
transitions.
3.3 Texture Feature Descriptors

In this section, we derive 7 texture feature
descriptors based on the definitions of equation (5)
and (6). The first 4 feature descriptors are derived
from the texture feature number histogram given by
equation (5) and can be regarded as the zero-th order
correlation descriptors since there is no correlation of
TFNs involved. The 5-th and 6-th descriptors are
based on the texture feature number co-occurrence
matrix in equation (6), and can be thought of as
first-order correlation descriptors because they
consider transitions between two TFAs. The 7-th
descriptor considers the joint occurrence of the TFNs
on the same pixels spatial location (x, y) under
different gray-level variance tolerance.
1) Coarseness.
Coarse= &4 Ry(54) Where D is the specific choice

Xy

of the gray-level variation tolerance. A pixe
corresponding to TFN 41 represents a drastic change
in its 8-connectivity neighborhood. So, the total
number of these TFNs of pixel (x, y) in the feature
image also provides a good indication of coarseness.

2) Homogeneity:

Hom= 84 Ry (0) A pixel corresponding to 7TFN O
xy

represents no significant change in its 8-connectivity
neighborhood. So, the total number of these TFN\s of
pixel (x, y) in the feature image provides a good
indication of homogeneity.

3) Mean Convergence:



we= 3 ImPo()- m| where pand s are the mean
n=0 Sp

and standard deviation of the TFCM under the p.

This MC feature descriptor indicates how close the

texture approximates the mean.

4) Variance:

Var = ?(n- my)? xpo(r) - The variance measures
n=0

deviation of TFNsfrom the mean.

5) Code Entropy:
B o :
CE=-a & poli. fd.a)log ool 1d.q) Y-
=0 j=

where (i, jld,q) isthe (i, j)-th entry of the TFN

co-occurrence matrix.

6) Code Similarity:

CS= ?pg(,-,qd,q) where p,(i, jld.g) s as defined
i=1

above with j= j. This feature descriptor is used to

caculate the density of same TFAs in its
8-connectivity neighborhood.
7) Resolution Similarity:

RS=2aa P('/—X);) . This feature descriptor provides
xy1+(i- J)

information about the joint probability p(j, j: x, )
of apixel at (x, y) whose TFNisiat D=0 and TFN
is j at specific p. The higher the RS the less the
change in TFN\s of the same pixel, thus, higher RS

feature implies the texture is more rough.

4. Experimental Results

In order to evaluate the performance of the
proposed method in texture classification, a set of
sample images was extracted from Brodatz's natural
texture image. 13 sets of natural texture images have
been used for this purpose.  They are the images of
bark, straw, herringbone weave, woolen cloth, pressed
calf leather, beach sand, water, raffia, pigskin, brick

wall, plastic bubbles shown in Fig. 7. Six texture

images of each set under different rotation, each of
resolution 256" 256 pixels with 256 gray levels were
extracted from each Brodatz's texture image. Then
each image was divided into 16 sub-images, each of
resolution 64 64 pixels. 16 sub-images from the
image with rotation 0° were taken as the training
samples, whereas the 80 sub-images of the other
images were selected as the test samples for
the tolerance of

classification. In experiments,

variation D is selected as 3. Figure 8 shows
sample images with different rotation and their
corresponding TFN histograms of TFCM method and
texture spectrums of TS method.

4.1 Classification using the TFN histogram
To demonstrate the discrimination performance

of the TFN histogram, we use a supervised
classification with the minimum distance rule to
classify nature images. The procedure of our
experiment is described as follows:

Step 1. When the supervised texture classification
algorithm is applied, we select 64 sample images to
train the TFN histogram.

Step 2. For each texture type k; calculate the TFN
histogram of the corresponding training samples and
denoteit as Si=S(j), k=0,1,...,.13and j=0,1,...,54.
Step 3. Caculate the TFN histogram for each
considered test sub-images and denoteitas T, T=T(j).
Step 4. Calculate the distance of TFN histogram
between the considered test sub-image and all the

training result Sy as
54 .
D(T,S,) = %IT(/) - Se(J)| (7)

Step5. The test sub-image will be assigned to classi if
the D(T, S) isthe minimum among all classes.

The experimental result listed in Table 1 shows
98.94% average accuracy rate. Similar experiments
are also taken in by using the texture spectrum of TS

method. The classification results listed in Table 2.



Its correct classification rate only reaches to 62.4%.
The experimental results reveal that the TFCM
method effectively captures the rotation effects on real
texture images than the TS method. Furthermore,
the TFCM is nearly rotation invariant.

4.2 Texture classification with the texture features
The features from the TFCM, GLCM and TS were
calculated over each sample sub-images of all the
thirty texture image classes of Fig. 7. Among the 28
textural features used in classifying Brodatz's texture
image, seven were TFCM feature, 13 were GLCM
features and remaining eight were TS features.
These textural features were compared using a
common dtatistical classification technique. Bayesian
minimum risk classifier was used for this purpose.
In the Bayesian classifier, the random sample x is
assigned to each class i based on the minimum loss
rule. A multivariate Gaussian probability density
function was assumed for the Bayesian classifier, with
each density specified by the mean vector and
covariance matrix. The minimum loss was computed

by maximizing the decision function
609 = InP(w) - Z10x- m)T 6 X(x- m)]- injG| (8)

where d;(x) is the decision function for class /, x the
sample feature vector, C; the covariance matrix, m
the mean feature vector for class /i, and P(w;) the
priori probability of occurrence of class w.
Classification process was carried out in the following
way. All the texture features extracted from each
method were used for classification and the results
were compared. The corresponding classification
results by using the Bayesian classification are
summarized in Table 3.

Table 3 shows the classification error rate in
classifying the thirteen selected Brodatz's texture
images with all features from each method. The

average error in classifying the thirteen texture sets

from the GLCM in four different directions ranged
from 19.2 t0 24.8%. The GLCM in the four different
directions were summed up and the 13 texture features
were calculated to feed as inputs to the Bayesian
classifier. These features from the GLCM with an
average error of 19.2% do not improve the
classification accuracy. The feature from the TS
with an average error of 33.1% showed poor
performances among the features from the three
methods in classifying the Brodatz's texture images.
The features from the TFCM performed well in
classifying the thirteen texture sets with the lowest
classification error compared to the other two methods.
Similar to GLCM method to produce the TFN
co-occurrence matrices with four different directions,
we generate four texture feature sets of the TFCM
method and feed to Bayesian classifier for
classification. The 5-th and 6-th features of each
texture feature set generate from the different
co-occurrence matrix, however, the first four and the
last texture features are the same among the four
texture feature sets. The four textura feature sets
from the TFN co-occurrence matrices result average
classification error rates from 1.4 to 2.7%. Summed
up the four TFN co-occurrence matrices,
corresponding to four different directions, to calculate
the texture feature set and feed to the classifier for
classification. The corresponding classification error

rate is 2.9%.

In chronic liver diseases the severity of infected
patients may range from healthy carrier to cirrhosis.
The conventional diagnostic method for patients with
diffuse parenchyma liver diseases depends mainly on
needle biopsy of the liver. However, the pathological
measurement of these diseases, such as hepatitis and
cirrhosis may be severely biased due to sampling error
in the biopsy specimen. Furthermore, it is an invasive

procedure that may result in morbidity or even



reliable

noninvasive clinical method of evaluating histological

mortality.  Therefore, developing a
changes in sonograms will be a major advance in

diagnosis and monitoring of chronic liver diseases.
Several characteristics of liver sonography have
been used to evaluate diffuse parenchyma liver
diseases. These include changes of echotexture,
echogenicity, liver surface, inferior edge and diameter
of hepatic and cystic vein. However, the measurement
of these characteristics was always subjective based
on the clinical doctor's observation. The disease
changes of the liver from normal to cirrhosis can be
reflected to the changes of echotexture in local texture
area. Thus, if we can establish correlation between the
changes of local texture and liver disease states, using

this information will be a great advantage for

classification of liver sonography.

In this section we apply the texture feature coding
method, co-occurrence matrix method and texture
spectrum method for classification the ultrasonic liver
images. Fig 9 shows three instances of ultrasonic
liver images. The experiments were conducted using
90 test images, which were classified into three liver
disease classes. . The 30 training liver sample images,
proved by liver biopsy and equally divided into three
disease groups that are normal liver, hepatitis and
cirrhosis, are used to train these parameters of the
ddimensional multivariate Gaussian  functions.
These images were proven by liver biopsy and equally
divided into 3 groups.

evaluated based using these 90 test images. We first

Five analysis methods were

analyze the classification rates of the five methods.
Their confusion matrices are listed in Table 4. In
Table 5, the rows of the tables represent the correct
results proven by biopsy and the columns of tables are
classification resulting from the classification
techniques compared. The results show that the

result using the texture feature coding method is better

than the other two.

5. Conclusion
A new texture analysis method called texture feature

coding method (TFCM) has been developed and
tested. The performance of this method has been
compared with GLCM and TS by testing some
Brodatz's natural texture images. The experimental
results revea that the TFCM is nearly rotation
invariant and shows better performance than the
GLCM and TS. The classification error with TFCM,
GLCM and TS were 2.9%, 19.2% and 33.1%.
Extensive studies should be carried out to test the
performance of the TFCM in applications such as

remote sensing, biomedical and color images, etc.
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D16

(Herringbone D19 (Woolen

D9 (Grass) D12 (Bark) D15 (Straw)

D24 (Pressed

D29 (Beach
sand)

D84 (Raffia)

D38 (Water)

grain)

D94 (Brick | D112 (Plastic
wall) bubbl es)
Fig.7. 13 texture images extracted from Brodatz's Album

D92 (Pigskin)

Tablel. Theresultsof test set classified by using TFN histogram method. In Table 1, the rows of the tables
represent the correct texture cluster and the columns of tables are classification resulting from TFN histogram.
The correct classification rate is 98.94%.

D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112
D9 80 5
D12 80
D15 75
D16 80 1
D19 80 2
D24 80
D29 80
D38 80 3
D68 77
D84 78
D92 80
D94 80
D112 80

11



Table2. Theresultsof test rotational texture set classified by using TS spectrum.  In Table2, the rows of the
tables represent the correct texture cluster and the columns of tables are classification resulting from TS

spectrum.  The correct classification rate is 62.40%.

D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112
D9 54 15 12
D12 41 15
D15 41 14 3
D16 44 8 11 11 3
D19 12 39 10 9
D24 14 62
D29 12 60 14 2 9
D38 2 16 62
D68 15 46
D84 10 10 15 16 8 10 56 6 11
D92 14 11 10 12 7 53
D94 11 14 5 46
D112 45

Table3. The classification error rates are computed with all features from the three methods. The displacement
of GLCM and TFCM s selected as one pixel.

Texture image class

Average
D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112 Error (%)
Method Features Classification error (%)
GLCM
0° 1-13 21 26 13 33 22 26 30 18 38 25 19 32 26 23.8
45° 1-13 24 24 16 22 22 23 34 11 22 10 27 34 29 229
90° 1-13 36 30 20 19 24 19 36 10 11 22 21 42 33 24.8

135° 1-13 23 22 14 29 18 22 32 9 22 23 17 33 22 20.5
Total 1-13 26 19 17 19 25 21 12 11 17 19 23 22 19 19.2

TS 1-8 38 45 48 31 24 32 39 33 24 25 29 29 3H# 331
TFCM
o° 1-7 1 o o o 3 2 2 1 3 0O 2 O 4 14
45° 1-7 3 0o 1. o 2 1 3 2 3 1 2 3 5 20
a0° 1-7 3 1. 2 1 4 3 2 O 4 3 3 3 6 2.7
135° 1-7 4 0 1 1 1 4 O O 3 2 1 4 5 2.7
Total 1-7 3 0 3 3 3 5 2 2 2 3 2 5 5 29

12
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D12 (Bark, 30°)

D12
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D12 (Bark,150%)

(a) Six texture images with different rotation of Bark
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Fig. 8. Six texture images with different rotation of Bark (D12) texture image set and their corresponding (a)

(b) Texture spectrum of TS method

normalized TFN histogram of TFCM method and texture spectrum of TS methods.
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(a) normal cases

(b)hepatitis case

(c)cirrhosis

Figure 9. Three samples of ultrasonic liver images. The image (@) isanormal liver.

and (c) are hepatitis and cirrhosis, respectively.

Table 4 Confusion matrices of TFCM, CM and TS.

Normal Hepatitis Cirrhosis
Normal 26 0
Hepatitis 3 3
Cirrhosis 0 29
@ Method 1 --- TFCM (texture feature coding method)
Normal Hepatitis Cirrhosis
Normal 22 4
Hepatitis 4 6
Cirrhosis 26
(b) Method 2 — CM (co-occurrence matrix method)
Normal Hepatitis Cirrhosis
Normal 16 6
Hepatitis 8 4
Cirrhosis 5 18

©

Method 4—T S (texture spectrum method)
Table 5. Correct classification rates of the five methods evaluated in this paper

Theimagesin (b)

M ethods Correcting rates False-negativerates
TECM 86.7% 4.4%

CM 75.7% 8.9%

TS 57.78% 12.2%
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