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中文摘要

  這一篇報告提出一套新的紋路分析的演算法則

稱之為紋路特徵編碼法。紋路特徵編碼法將明亮度

影像轉變成以紋路特徵數為像素值之特徵影像。由

此特徵影像中所計算得之特徵數統計圖與特徵數

共發矩陣被用來產生紋路特徵，以用於往後的紋路

分析上。在實驗中我們將以自然紋路影像與肝臟超

音波影像為實驗對象並將結果與傳統的明亮度共

發矩陣與紋路頻譜比較。實驗驗證使用紋路特徵編

螞法的結果遠較其他兩種為佳。

關鍵字: 紋路分析，紋路特徵編碼法，明亮度共發

矩陣，紋路頻譜

Abstract
This paper proposes a new texture analysis 

method namely texture feature coding method 

(TFCM).   The texture feature coding method 

transforms a gray-level image into feature image 

whose each pixel is represented by a texture feature 

number (TFN).  The TFN histogram and TFN 

co-occurrence matrix are derived to generate many 

texture features for texture classification.  The 

gray-level co-occurrence matrix (GLCM) and texture 

spectrum (TS) have been used for comparison in 

discriminating some of Brodatz’s natural texture 

images and ultrasonic liver images in experiments.  

Experimental results reveal that the results using the 

texture feature coding methods is superior to other

two.  

Keywords: Texture analysis, Texture feature coding 

method, Gray-level co-occurrence matrix, Texture 

spectrum

1. Introduction
  Texture analysis is an important technique in many 

applications of analysis for classification or 

segmentation of image.  In the texture segmentation, 

the pixels are grouped together to form regions of 

uniform texture based on the distribution of local 
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features, whereas in the texture classification, the 

problem is to classify an instance of a textured region 

in an image as one of a set of classes.  The general 

methods for feature extraction are estimate the local 

textures at each pixel in a texture images and thus 

derive a set of statistics from the distributions of the 

local features. There are several methods for defining

the textural features. Each method has its own way to 

define the features that are used in the classification 

problem. In the practice, structural and statistical 

approaches are the two major methods for extracting 

texture features. In the structural methods, texture is 

regarded as the repetition of some basic primitive 

patterns with a certain rule of placement.  The 

Fourier spectrum analysis [1] is a well-known method 

for determining the primitive and the displacement 

rule.  In the statistical method, texture is considered 

as the distribution of texture features that are extracted 

on a local area on the textural image.  The gray-level 

co-occurrence matrix (GLCM) [2] and texture 

spectrum (TS) [3] are two widely used texture 

analysis methods in the category.

In this paper, we propose a new texture analysis 

method called texture feature coding method. It is 

used to analyze the Brodatz’s texture images and 

ultrasonic liver images for classification. 

  This paper is organized as follows. In section 2 we 

describe the two methods.  In section 3 of this paper 

we propose a new texture analysis method namely 

texture feature coding method (TFCM) that contains 

the advantages of both the GLCM and TS of texture 

analysis.  Section 4 discusses the performance of 

TFCM with the GLCM and TS method by testing 

some of Brodatz’s natural texture images. Finally, the 

conclusion of this paper is given.    

2. Previous Works
GLCM and TS methods of texture analysis are 

briefly described here. Techniques of both methods 

are utilized in the development of the TFCM method.

2. 1 Gray-Level Co-occurrence Matrix [1]

A co-occurrence matrix is generally referred to 

as a gray-level co-occurrence matrix whose entries are 

transitions between all pairs of two gray levels (not 

necessarily distinct) [1]. The gray-level transitions are 

calculated based on two parameters, displacement d

and angular orientation θ. More precisely, let i and j
be two gray levels and ),(, jiNd θ  denote the number 

of transitions between two pixels whose gray levels 

are i and j with d-pixels apart and angular orientation 
θ. In other words, ),(, jiNd θ  is the number of 

pixel-pairs at locations (x, y) and (w, z) satisfying the 

following conditions; 
),(),(),(,),(,),( θdzwyxjzwGiyxG dm =−==

where ),(),(),( θdzwyx
dm

=−  is a distance measure 

to describe the distance between two pixels of spatial 

locations at (x, y) and (w, z) with d-pixels apart and 
along angular orientation θ. Normalizing ),(, jiNd θ

yields the probability or the relative frequency of 

gray-level transitions.

N
jiN

djip d ),(
),,( ,θθ =               (1)

Where N is the number of total gray-level transitions 

in the co-occurrence matrix. 

Based on the gray-level co-occurrence matrix, 

Haralick [1] proposed 13 feature measures for texture 

analysis under a specific d-pixels apart and angular 

orientation θ.  There are angular second moment, 

correlation, variance, inverse difference moment, 

entropy, sum entropy, difference entropy, information 

measure of correlation, sum average, contrast, sum 

variance, difference variance.  Because of the 

descriptive and easily computable nature, the 

co-occurrence features have been widely used in most 

of the texture analysis problems.  
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2. 2 Texture Spectrum [3]

The texture spectrum was first proposed by He 

and Wang in [3]. The idea is to consider a so-called 

texture unit described by Fig. 1 with V0 , the central 

pixel, designated as the pixel currently examined and 
its 8 neighboring pixels 0, >iVi . Three values 

{0,1,2} will be assigned to Vi  respectively according 
to 0VVi < , 0VVi = , 0VVi >  as given below.

In equation (2), the ∆  is denoted to tolerance of 

variation. Obviously, there are 656138 =
combinations for the iE  in equation (2). The 

distribution of occurrence of all texture numbers 
iEN

generated by equation (2) is called texture spectrum.  

As the texture unit represents the local texture 

information of a given pixel and its neighborhood, the 

statistics of all the texture units in an image reveal its 

global texture aspects.   Several features are useful 

for classification and defined in [3], being,
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Figure 1. 3x3 texture unit of texture spectrum
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black-white symmetry (BWS), geometric symmetry 

(GS), degree of direction (DD), orientation features 

(MHS, MVS, MDS1 and MDS2) and central 

symmetry (CS). 

3. Texture Feature Coding Method
In this section, we propose a novel approach to 

generating texture feature numbers, called Texture 

Feature Coding Method (TFCM). The design 

rationale of this method is based on gray-level 

variations of a 33×  texture unit.

3. 1 Texture Feature Number Generation

TFCM is a coding scheme, which transforms an 

original image into a texture feature image whose 

pixels are represented by texture feature numbers. The 

texture feature number of each pixel X is generated on 

the basis of gray-level changes of its 8 surrounding 

pixels, called a texture unit, a term was used in He and 

Wang's work [3] described in Fig. 1.

X
2 2

22 1

1
1 1

Fig. 2. 3x3 texture unit of TFCM

Unlike He and Wang's texture spectrum, we 

consider the connectivity of the texture unit. The 8 

neighboring pixels in Fig. 2 constitute the 

8-connectivity of the texture unit, which can be 

divided into the first-order 4-connectivity pixels and 

second-order 4-connectivity pixels. The four pixels 

labeled 1 satisfy the first-order 4-connectivity of the 

texture unit because they are immediately adjacent to 

the pixel X. They will be denoted by first-order 

connectivity pixels. The other four pixels labeled 2

satisfy the second-order 4-connectivity of the texture 

unit, which are diagonally adjacent to X and will be 

denoted by second-order connectivity pixels.  In 

order to code pixel X in Fig. 2, TFCM produces a pair 
of integers ( α , β ) where α  and β  represent 

gray-level variations of first-order connectivity and 

second-order connectivity respectively. As shown in 

Fig. 3, two scan lines along the 0o-180o and 90o-270o
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directions produce two sets of three successive 

first-order connectivity with pixel X in the middle of 

the horizontal and vertical lines forming by "+". 

Similarly, two scan lines along the diagonal directions 

45o-225o and 135o-315o forming by " × " also 

produce two sets of three successive second-order 

connectivity pixels as shown in Fig. 4. 

X

0
o o

scan line

2 2

22 1

1
1 1

-180
scan line90 -270

o o

X

o o
scan line45

1

1 22
1 1

22

-225
scan line135 -315o o:+:

Assume that the scan direction is from top to 

down and left to right, the three successive pixels can 

be arranged as (a, b, c) in the scanning order.  For 

example, if  (a ,b ,c)  represents pixels scanned by 

the vertical line of the first-order connectivity in Fig. 3, 

the top pixel is denoted by a, pixel X by b and the 
bottom pixel by c.  Suppose that (Ga,Gb,Gc) 

corresponds the gray levels of three pixels (a, b, c) 

respectively.  If we consider two successive 
gray-level changes between two pairs (Ga,Gb) and 

(Gb,Gc), there are four different types of variations.  

The four types of gray-level variation defined by 

equation (3) can be graphed by the gray-level 

graphical structure shown in Fig. 5.  Type (i) 

describes the case that the gray levels of a, b and c are 

very close within the tolerance ∆ . Type (ii) is the 

case that one pair of gray levels is within ∆ , but the 

gray-level variation of the other pair variation exceeds 

∆ . Type (iii) is the case where the gray levels of a, b, 

c are continuously decreasing or increasing with 

gray-level differences larger than ∆ . In Type (iv), the 

gray-level variation is first decreasing then increasing 

or first increasing then decreasing which the 

increments and decrements exceed ∆ .

(i) 

(ii) 

(iii)

(iv)

Fig. 5. Types of gray-level graphical structure  variations
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According to this definition of gray-level 

graphical structure variation. The higher the type 

number is, the greater gray-level variation will occur.  

Since both α  and β , corresponding to first and 

second order connectivity respectively, have two scan 

lines, each of which can produce a type of gray-level 

variation, α  and β  can be assigned by a pair of 

gray-level graphical structure variations. The total 

number of combinations of arbitrary two gray-level 

graphical structure variations (including self 

combinations) is 10
2

)14(4
=

+ .  The 10 

combinations are listed in Fig.6. 

            Scan line1

(i) (ii) (iii) (iv)

(i) 1 2 3 5

(ii) 2 7 11 13

(iii) 3 11 17 19

Scan 

line2

(iv) 5 13 19 23

Fig. 6. The variation generation of first-order (α ) or 

second-order ( β ) 4-connectivity

For example, if 11or   =βα , there is a combination of 

(ii) and (iii). More precisely the columns represent the 

horizontal scan line 0o-180o for α  or the diagonal 

line 45o-225o for β , and the rows represent the 

Fig. 3. First-order 4-connectivity   Fig. 4. Second-order 4-connectivity
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vertical scan line 90o-270o for α  or the asymmetric 

diagonal line 135o-315o for β . Finally, the texture 

feature number of each pixel is generated by taking 
the product of α  and β . Let the gray level of the 

pixel with spatial location (x, y) be denoted by G(x, y) 

and the corresponding texture feature number by 

TFN(x, y). Then

),(),(),( yxyxyxTFN βα ×=        (4) 

where α (x, y) and β (x, y) are values obtained using 

Fig. 6 for the pixel at spatial location (x, y). 

3.2 Texture Feature Number Histogram and Texture 

Feature Number Co-occurrence Matrix 

According to equation (4), there are 55 used 

texture feature number among {1,2… 529}. Therefore 

we can compress 529 values to 54 values by removing 

unused texture feature numbers. By re-labeling we 

map that these 55 values to the values 0 to 54, i.e., 

,54}{0,1,2,L .  In this case, we can define a texture 

feature number histogram by

  }54,2,1,0{,
)(

)( L∈= ∆
∆ n

N
nNnp      (5)

where ∆  is the gray-level  variation tolerance given 
in equation (3), )(nN∆  is the frequency of 

occurrence of the texture feature number n and N is 

the total number of pixels in the feature image.  In 

Section 2.1, the co-occurrence matrix was defined on 

gray levels of an image. However, in the TFCM 

approach we define a co-occurrence matrix on texture 

feature numbers of the feature image obtained by 

TFCM, called texture feature number co-occurrence 

matrix. In analogy with equation (1), a probability 

distribution of transitions between any pair of 

arbitrary two texture feature numbers can be defined 

similarly by 

}54,,2,1,0{,,
),(

),,( ,, L∈= ∆
∆ ji

N
jiN

djip
t

d θθ   (6)

where ∆  is the gray-level variation tolerance given 
in equation (3), ),(,, jiN d θ∆  is defined similarly as 

in equation (1) with the gray-level variation tolerance 

∆ , i and j are texture feature numbers rather than gray 
levels as defined in equation (1) and tN  is the 

normalization factor which is the total number of TFN

transitions. 

3.3.  Texture Feature Descriptors

In this section, we derive 7 texture feature 

descriptors based on the definitions of equation (5) 

and (6). The first 4 feature descriptors are derived 

from the texture feature number histogram given by 

equation (5) and can be regarded as the zero-th order 

correlation descriptors since there is no correlation of 

TFNs involved. The 5-th and 6-th descriptors are 

based on the texture feature number co-occurrence 

matrix in equation (6), and can be thought of as 

first-order correlation descriptors because they 

consider transitions between two TFNs. The 7-th 

descriptor considers the joint occurrence of the TFNs 

on the same pixels’ spatial location (x, y) under 

different gray-level variance tolerance. 

1) Coarseness: 

∑ ∑ ∆=
x y

PCoarse )54(  where ∆  is the specific choice 

of the gray-level variation tolerance.  A pixel 

corresponding to TFN 41 represents a drastic change 

in its 8-connectivity neighborhood. So, the total 

number of these TFNs of pixel (x, y) in the feature 

image also provides a good indication of coarseness.

2) Homogeneity: 

∑ ∑ ∆=
x y

PHom )0(  A pixel corresponding to TFN 0 

represents no significant change in its 8-connectivity 

neighborhood. So, the total number of these TFNs of 

pixel (x, y) in the feature image provides a good 

indication of homogeneity.

3) Mean Convergence: 
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∑
= ∆

∆∆ −⋅
=

54

0

)(

n

npn
MC

σ
µ  where ∆µ and ∆σ are the mean 

and standard deviation of the TFCM under the ∆ .   

This MC feature descriptor indicates how close the 

texture approximates the mean.

4) Variance: 

∑
=

∆∆ ⋅−=
54

0

2 )()(
n

npnVar µ . The variance measures 

deviation of TFNs from the mean.

5) Code Entropy:

),,(log),,(
54

0

54

0
θθ djipdjipCE

i j
∆

= =
∆∑ ∑−= y:

where ),,( θdjip∆  is the ),( ji -th entry of the TFN

co-occurrence matrix.

6) Code Similarity: 

∑
=

∆=
54

1

2 ),,(
i

diipCS θ  where ),,( θdjip∆  is as defined 

above with ji = .  This feature descriptor is used to 

calculate the density of same TFNs in its 

8-connectivity neighborhood.

7) Resolution Similarity: 

∑ ∑
−+

=
x y ji

yxjiPRS
2)(1
),;,( . This feature descriptor provides 

information about the joint probability ),;,( yxjip

of a pixel at (x, y) whose TFN is i at 0=∆  and TFN

is j at specific ∆ . The higher the RS, the less the 

change in TFNs of the same pixel, thus, higher RS 

feature implies the texture is more rough.

4. Exper imental Results
In order to evaluate the performance of the 

proposed method in texture classification, a set of 

sample images was extracted from Brodatz’s natural 

texture image. 13 sets of natural texture images have 

been used for this purpose.   They are the images of 

bark, straw, herringbone weave, woolen cloth, pressed 

calf leather, beach sand, water, raffia, pigskin, brick 

wall, plastic bubbles shown in Fig. 7.  Six texture 

images of each set under different rotation, each of 

resolution 256256 × pixels with 256 gray levels were 

extracted from each Brodatz’s texture image.  Then 

each image was divided into 16 sub-images, each of 

resolution 6464 ×  pixels.  16 sub-images from the 

image with rotation 0o were taken as the training 

samples, whereas the 80 sub-images of the other 

images were selected as the test samples for 

classification. In experiments, the tolerance of 

variation ∆  is selected as 3.   Figure 8 shows 

sample images with different rotation and their 

corresponding TFN histograms of TFCM method and 

texture spectrums of TS method.

4.1 Classification using the TFN histogram
To demonstrate the discrimination performance 

of the TFN histogram, we use a supervised 

classification with the minimum distance rule to 

classify nature images.  The procedure of our 

experiment is described as follows:

Step 1. When the supervised texture classification 

algorithm is applied, we select 64 sample images to 

train the TFN histogram. 

Step 2. For each texture type k, calculate the TFN 

histogram of the corresponding training samples and 

denote it as Sk=Sk(j), k=0,1,… ,13 and  j=0,1,… ,54.

Step 3. Calculate the TFN histogram for each 

considered test sub-images and denote it as T, T=T(j). 

Step 4. Calculate the distance of TFN histogram 

between the considered test sub-image and all the 

training result Sk as

∑ −=
54

0
)()(),( jSjTSTD kk             (7)

Step5. The test sub-image will be assigned to class i if 

the D(T, Si) is the minimum among all classes. 

The experimental result listed in Table 1 shows 

98.94% average accuracy rate. Similar experiments 

are also taken in by using the texture spectrum of TS 

method.  The classification results listed in Table 2.  
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Its correct classification rate only reaches to 62.4%.   

The experimental results reveal that the TFCM 

method effectively captures the rotation effects on real 

texture images than the TS method.  Furthermore, 

the TFCM is nearly rotation invariant. 

4.2 Texture classification with the texture features

The features from the TFCM, GLCM and TS were 

calculated over each sample sub-images of all the 

thirty texture image classes of Fig. 7.  Among the 28 

textural features used in classifying Brodatz’s texture 

image, seven were TFCM feature, 13 were GLCM 

features and remaining eight were TS features.  

These textural features were compared using a 

common statistical classification technique. Bayesian 

minimum risk classifier was used for this purpose.  

In the Bayesian classifier, the random sample x is 

assigned to each class i based on the minimum loss 

rule.  A multivariate Gaussian probability density 

function was assumed for the Bayesian classifier, with 

each density specified by the mean vector and 

covariance matrix. The minimum loss was computed 

by maximizing the decision function 

iii
T

iii CmxCmxwPxd ln
2
1

)]()[(
2
1

)(ln)( 1 −−−−= − (8)

where )(xd i is the decision function for class i, x the 

sample feature vector, iC  the covariance matrix, mi

the mean feature vector for class i, and )( iwP the 

priori probability of occurrence of class wi.  

Classification process was carried out in the following 

way.  All the texture features extracted from each 

method were used for classification and the results 

were compared.    The corresponding classification 

results by using the Bayesian classification are 

summarized in Table 3. 

Table 3 shows the classification error rate in 

classifying the thirteen selected Brodatz’s texture 

images with all features from each method.  The 

average error in classifying the thirteen texture sets 

from the GLCM in four different directions ranged 

from 19.2 to 24.8%.  The GLCM in the four different 

directions were summed up and the 13 texture features 

were calculated to feed as inputs to the Bayesian 

classifier.  These features from the GLCM with an 

average error of 19.2% do not improve the 

classification accuracy.  The feature from the TS 

with an average error of 33.1% showed poor 

performances among the features from the three 

methods in classifying the Brodatz’s texture images.  

The features from the TFCM performed well in 

classifying the thirteen texture sets with the lowest 

classification error compared to the other two methods.  

Similar to GLCM method to produce the TFN 

co-occurrence matrices with four different directions, 

we generate four texture feature sets of the TFCM 

method and feed to Bayesian classifier for 

classification.  The 5-th and 6-th features of each 

texture feature set generate from the different 

co-occurrence matrix, however, the first four and the 

last texture features are the same among the four 

texture feature sets. The four textural feature sets 

from the TFN co-occurrence matrices result average 

classification error rates from 1.4 to 2.7%. Summed 

up the four TFN co-occurrence matrices, 

corresponding to four different directions, to calculate 

the texture feature set and feed to the classifier for 

classification.  The corresponding classification error 

rate is 2.9%. 

In chronic liver diseases the severity of infected 

patients may range from healthy carrier to cirrhosis. 

The conventional diagnostic method for patients with 

diffuse parenchyma liver diseases depends mainly on 

needle biopsy of the liver. However, the pathological 

measurement of these diseases, such as hepatitis and 

cirrhosis may be severely biased due to sampling error 

in the biopsy specimen. Furthermore, it is an invasive 

procedure that may result in morbidity or even 
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mortality. Therefore, developing a reliable 

noninvasive clinical method of evaluating histological 

changes in sonograms will be a major advance in 

diagnosis and monitoring of chronic liver diseases. 

Several characteristics of liver sonography have 

been used to evaluate diffuse parenchyma liver 

diseases. These include changes of echotexture, 

echogenicity, liver surface, inferior edge and diameter 

of hepatic and cystic vein. However, the measurement 

of these characteristics was always subjective based 

on the clinical doctor’s observation.  The disease 

changes of the liver from normal to cirrhosis can be 

reflected to the changes of echotexture in local texture 

area. Thus, if we can establish correlation between the 

changes of local texture and liver disease states, using 

this information will be a great advantage for 

classification of liver sonography.

In this section we apply the texture feature coding 

method, co-occurrence matrix method and texture 

spectrum method for classification the ultrasonic liver 

images. Fig 9 shows three instances of ultrasonic 

liver images.  The experiments were conducted using 

90 test images, which were classified into three liver 

disease classes. . The 30 training liver sample images, 

proved by liver biopsy and equally divided into three 

disease groups that are normal liver, hepatitis and 

cirrhosis, are used to train these parameters of the 

d-dimensional multivariate Gaussian functions.  

These images were proven by liver biopsy and equally 

divided into 3 groups.  Five analysis methods were 

evaluated based using these 90 test images. We first 

analyze the classification rates of the five methods.  

Their confusion matrices are listed in Table 4. In 

Table 5, the rows of the tables represent the correct 

results proven by biopsy and the columns of tables are 

classification resulting from the classification 

techniques compared.  The results show that the 

result using the texture feature coding method is better 

than the other two. 

5. Conclusion
A new texture analysis method called texture feature 

coding method (TFCM) has been developed and 

tested.  The performance of this method has been 

compared with GLCM and TS by testing some 

Brodatz’s natural texture images.  The experimental 

results reveal that the TFCM is nearly rotation 

invariant and shows better performance than the 

GLCM and TS. The classification error with TFCM, 

GLCM and TS were 2.9%, 19.2% and 33.1%.  

Extensive studies should be carried out to test the 

performance of the TFCM in applications such as 

remote sensing, biomedical and color images, etc.      
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D9 (Grass) D12 (Bark) D15 (Straw)
D16 

(Herringbone 
weave)

D19 (Woolen 
cloth)

D24 (Pressed 
calf leather)

D29 (Beach 
sand) D38 (Water) D68 (Wood 

grain) D84 (Raffia)

D92 (Pigskin) D94 (Brick 
wall)

D112 (Plastic 
bubbles)

Fig.7. 13 texture images extracted from Brodatz’s Album

Table 1.  The results of test set classified by using TFN histogram method.  In Table 1, the rows of the tables 

represent the correct texture cluster and the columns of tables are classification resulting from TFN histogram. 

The correct classification rate is 98.94%.
D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112

D9 80 5
D12 80
D15 75
D16 80 1
D19 80 2
D24 80
D29 80
D38 80 3
D68 77
D84 78
D92 80
D94 80

D112 80
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Table 2.  The results of test rotational texture set classified by using TS spectrum.  In Table2, the rows of the 

tables represent the correct texture cluster and the columns of tables are classification resulting from TS 

spectrum.  The correct classification rate is 62.40%.
D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112

D9 54 15 12
D12 41 15
D15 41 14 3
D16 44 8 11 11 3
D19 12 39 10 9
D24 14 62
D29 12 60 14 2 9
D38 2 16 62
D68 15 46
D84 10 10 15 16 8 10 56 6 11
D92 14 11 10 12 7 53
D94 11 14 5 46

D112 45

Table 3.  The classification error rates are computed with all features from the three methods. The displacement 
of GLCM and TFCM is selected as one pixel.

Texture image class

D9 D12 D15 D16 D19 D24 D29 D38 D68 D84 D92 D94 D112
Average

Error (%)

Method Features Classification error (%)
GLCM

0o 1-13 21 26 13 33 22 26 30 18 38 25 19 32 26 23.8
45o 1-13 24 24 16 22 22 23 34 11 22 10 27 34 29 22.9
90o 1-13 36 30 20 19 24 19 36 10 11 22 21 42 33 24.8

135o 1-13 23 22 14 29 18 22 32 9 22 23 17 33 22 20.5
Total 1-13 26 19 17 19 25 21 12 11 17 19 23 22 19 19.2
TS 1-8 38 45 48 31 24 32 39 33 24 25 29 29 34 33.1

TFCM
0o 1-7 1 0 0 0 3 2 2 1 3 0 2 0 4 1.4

45o 1-7 3 0 1 0 2 1 3 2 3 1 2 3 5 2.0
90o 1-7 3 1 2 1 4 3 2 0 4 3 3 3 6 2.7

135o 1-7 4 0 1 1 1 4 0 0 3 2 1 4 5 2.7
Total 1-7 3 0 3 3 3 5 2 2 2 3 2 5 5 2.9
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D12 (Bark, 00) D12 (Bark, 300) D12 (Bark, 600) D12 (Bark, 900) D12 (Bark, 1200) D12 (Bark,1500)
(a) Six texture images with different rotation of Bark (D12) texture image set

D12 (Bark, 00) D12 (Bark, 300) D12 (Bark, 600)

D12 (Bark, 900) D12 (Bark, 1200) D12 (Bark,1500)
(a) TFN histogram of TFCM method

D12 (Bark, 00) D12 (Bark, 300) D12 (Bark, 600)

D12 (Bark, 900) D12 (Bark, 1200) D12 (Bark,1500)
(b) Texture spectrum of TS method

Fig. 8. Six texture images with different rotation of Bark (D12) texture image set and their corresponding (a) 
normalized TFN histogram of TFCM method and texture spectrum of TS methods.
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(a) normal cases     (b)hepatitis case   (c)cirrhosis

Figure 9. Three samples of ultrasonic liver images.  The image (a) is a normal liver.  The images in (b) 

and (c) are hepatitis and cirrhosis, respectively.

Table 4 Confusion matrices of TFCM, CM and TS.

Normal Hepatitis Cir rhosis

Normal 26 4 0

Hepatitis 3 24 3

Cir rhosis 0 1 29

(a) Method 1 --- TFCM (texture feature coding method)

Normal Hepatitis Cir rhosis

Normal 22 4 4

Hepatitis 4 20 6

Cir rhosis 0 4 26

(b) Method 2 – CM (co-occurrence matrix method)

Normal Hepatitis Cir rhosis

Normal 16 8 6

Hepatitis 8 18 4

Cir rhosis 5 7 18

(c) Method 4— TS (texture spectrum method)

Table 5. Correct classification rates of the five methods evaluated in this paper

Methods Correcting rates
False-negative rates

TFCM
86.7% 4.4%

CM 75.7% 8.9%

TS 57.78% 12.2%
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