本研究建立考慮商品在非即時損耗的條件下,是具有剩餘價值且允許缺貨之存貨模型。在商品非即時損耗、剩餘價值且允許缺貨的情況下,假設需求率和損耗率為固定常數而生產率則與時間呈線性函數變化,且將損耗率假設為兩階段的變化。本研究先假設商品在存貨開始階段不會有損耗情形的發生,經過一段時間後,商品則才會產生損耗且損耗率為一個固定常數。而商品損耗在開始階段是具有剩餘價值,但過了某個時間點之後損耗商品就會產生額外的處理成本。本研究在求解過程中所建立的數理存貨模型是以傳統的最佳化理論以求出存貨相關總成本為最小值,目的是將所建立之存貨模型找出最適當的存貨策略。 In this study, we want to establish an inventory model for non-instantaneous deteriorating items with allowable salvage value and shortage. Under the conditions of non-instantaneous deteriorating items and salvage value and shortage, the constant demand rate and deterioration rate and production rate linearly, we assume that the deterioration rate is divided into two stages. Beginning the model, the goods won’t deteriorate in this period, but after a constant time, the goods is starting to deteriorate as a constant rate. The optimal solution procedures for the present problems are provided. Numerical examples are presented to illustrate the models .