存貨管理中,許多研究人員研究了斜坡型需求率於損耗性產品存貨模式,在這篇文章考慮了下降梯型需求及上升斜坡型需求率的存貨模型,需求率是一分段線性函數。在實際環境中有許多產品,如食品、藥品等都存在不同需求的問題,是存貨管理不可忽視的課題。 所謂斜坡型需求,即一般新產品剛上市時,需求率常隨著時間向前移動而遞增,直到某一時點之後,需求才會呈平穩狀態,而這樣的假設其實是不足的。基於現實的考量,在第三章本文考慮新產品上市初期需求與時間有關,剛開始需求呈現上升狀態,直到穩定期時間點,需求開始呈現水平穩定狀態,當於產品生命週期衰退期時間點,需求開始呈現下降狀態時之下降梯型需求的問題;第四章本文考慮新產品上市初期需求與時間有關,剛開始需求呈現上升狀態,直到穩定期時間點,需求開始呈現水平穩定狀態,當產品市場擴大或提供多樣性的時間點,需求開始呈現上升狀態時之上升斜坡型需求的存貨模型。 本論文中將分別討論兩種模型:一種是沒有缺貨模型,另一是缺貨模型。以單位時間總平均成本最低為目標,分別建立數學模式,文中對所建構的數理存貨模式利用傳統的最佳化原理找出最適的存貨策略;最後,以數值範例說明模式的求解過程並對各參數做敏感性分析。 In inventory management many researchers have studied the inventory model with ramp type demand rate, time-dependent deterioration rate and shortages. In this article, we extend inventory model by considering the trapezoidal type and rising ramp type demand rate, the demand rate is a piecewise linearly function. It is important to control and maintains the inventories of deteriorating items for the modern corporation. In this paper, we consider inventory model for time-dependent deteriorating items with trapezoidal type demand rate and rising ramp type demand rate. Assume the demand rate with continuous rising ramp function of time, that is the demand rate for such items increases with the time up to certain time and then ultimately stabilizes and becomes constant, and finally the demand rate decreases or increases. We will discuss two models: one is without shortage and the other is with shortage. In this paper, we assume that the inventory objective is to minimize the total cost per unit time of the system.