在資料採礦的過程中,原始來源資料中的資料遺漏或缺失會造成分析結果異常與偏誤,若是用於企業組織決策支援,可能造成組織決策錯誤,影響企業經營績效。本研究以群集分析技術為基礎,選擇粒子群最佳化演算法發展一套遺漏值推估模組,並提出三個改良方法,透過實驗探討其改良成效。另外針對資料筆數較多之較大型資料集,本研究提出一個兩階段分群推估法,經過實驗證實可有效提昇演算效能。 In the data mining process, the missing data of the original source will cause analysis results excepted and errors. If the decision support for the organization may lead to organizational decision-making errors, and affect business performance. In this study, cluster analysis based on particle swarm optimization choose to develop a set of missing value estimation module, and propose three improved methods , improvement through the experimental results. For large data sets, this study proposes a two-stage cluster estimation method, after a test proved to be effective to enhance routing performance.