English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 914208      線上人數 : 1155
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/28420


    題名: 應用類神經網路於梨山地滑地即時地下水位預測
    其他題名: Using Artificial Neuron Network on the Real-Time Prediction of Groundwater Level of Lishan Landslide
    作者: 洪永峰
    HONG, YUNG-FENG
    貢獻者: 科技學院永續綠色科技碩士學位學程
    洪耀明
    HONG, YAO-MING
    關鍵詞: 深層崩塌;地下水位;類神經網路
    Deep-seated landslide;Groundwater level;Artificial Neuron Network
    日期: 2020
    上傳時間: 2022-05-23 15:40:53 (UTC+8)
    摘要:   台灣的地形及氣候容易誘發崩塌,其中深層崩塌與地下水位有直接關係,本研究以類神經網路進行崩塌地地下水預測,首先收集梨山地滑地之歷史降雨與地下水位資料,再以Hong(2017)研發之類神經網路模式為基礎,選取一場暴雨,進行模式之參數校準及驗證,並應用於之後發生之另一場暴雨。分析結果發現,可以精準預測一小時、二小時後之地下水位,作為坡地崩塌預警系統建置之參考依據。
      Taiwan's topography and climate are prone to induce landslide. Deep-seated landslide is directly related to groundwater level. In this study, the neural network was used to predict groundwater in deep-seated landslide areas. First, the historical rainfall and groundwater level data of the Lishan Landslide were collected. Based on neural network models developed by Hong (2017), a heavy rainfall was selected to perform parameter calibration and verification of the model, which was applied to predict the groundwater level that occurred later. Analysis found that the groundwater level can be accurately predicted one hour and two hours later, and used as a reference for the establishment of a deep-seated landslide warning system.
    顯示於類別:[永續綠色科技碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    108NHU00159027-001.pdf2727KbAdobe PDF251檢視/開啟
    index.html0KbHTML660檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋