English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18278/19583 (93%)
造訪人次 : 912312      線上人數 : 916
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nhuir.nhu.edu.tw/handle/987654321/29612


    題名: Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems
    作者: 陳萌智;Chen, Min-Chih
    貢獻者: 資訊管理學系
    關鍵詞: Evolutionary algorithm with probabilistic models;Scheduling problems;Estimation of distribution algorithms
    日期: 2012-03
    上傳時間: 2023-09-01 10:40:18 (UTC+8)
    摘要: In our previous researches, we proposed the artificial chromosomes with genetic algorithm (ACGA) which combines the concept of the Estimation of Distribution Algorithms (EDAs) with genetic algorithms (GAs). The probabilistic model used in the ACGA is the univariate probabilistic model. We showed that ACGA is effective in solving the scheduling problems. In this paper, a new probabilistic model is proposed to capture the variable linkages together with the univariate probabilistic model where most EDAs could use only one statistic information. This proposed algorithm is named extended artificial chromosomes with genetic algorithm (eACGA). We investigate the usefulness of the probabilistic models and to compare eACGA with several famous permutation-oriented EDAs on the benchmark instances of the permutation flowshop scheduling problems (PFSPs). eACGA yields better solution quality for makespan criterion when we use the average error ratio metric as their performance measures. In addition, eACGA is further integrated with well-known heuristic algorithms, such as NEH and variable neighborhood search (VNS) and it is denoted as eACGAhybrid to solve the considered problems. No matter the solution quality and the computation efficiency, the experimental results indicate that eACGAhybrid outperforms other known algorithms in literature. As a result, the proposed algorithms are very competitive in solving the PFSPs.
    關聯: Computers & Industrial Engineering
    vol. 62, no. 2
    pp.536-545
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Extended artificial.pdf633KbAdobe PDF140檢視/開啟


    在NHUIR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋